Patterns of K+ permeation following inhibition of Na+ transport in rabbit cortical collecting tubule.

Abstract

The passive (lumen-to-bath) K+ permeation (KK) of rabbit cortical collecting tubules was measured before and after inhibition of Na+ transport. Inhibition of the Na-K pump with ouabain reduced KK. This result contrasts sharply with the previously described increase in KK observed following inhibition of Na+ transport with amiloride. These opposite changes in KK are owing to the fact that a substantial component of the lumen-to-bath K+ permeation involves a transcellular pathway. Amiloride, because it hyperpolarizes the apical membrane, increases KK; ouabain, because it depolarizes the cell, decreases KK. Previous results have also suggested that the cell K+ permeability is secondarily altered by these agents so that the changes in voltage and permeability are additive. These patterns of changes in KK were used to evaluate the mechanism of action of two agents that partially inhibit Na+ transport: vasopressin and prostaglandin (PG) E2. Their effect on KK was qualitatively similar to that of amiloride. In amiloride-treated tubules, neither vasopressin nor PGE2 altered KK. Neither did they alter the normal reduction in KK caused by pump inhibition. Thus they did not have any direct effect on K+ permeability. These results are consistent with the thesis that vasopressin and PGE2 inhibit Na+ absorption by reducing apical membrane permeability. The relation between the regulation of Na+ absorption and K+ permeation may have important implications for the regulation of K+ secretion by the cortical collecting tubule.

Cite this paper

@article{Stokes1986PatternsOK, title={Patterns of K+ permeation following inhibition of Na+ transport in rabbit cortical collecting tubule.}, author={John B. Stokes}, journal={The American journal of physiology}, year={1986}, volume={250 1 Pt 2}, pages={F120-6} }