Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens.

Abstract

Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. WIREs Nanomed Nanobiotechnol 2017, 9:e1403. doi: 10.1002/wnan.1403 For further resources related to this article, please visit the WIREs website.

DOI: 10.1002/wnan.1403

5 Figures and Tables

Cite this paper

@article{Fan2017ParticulateDS, title={Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens.}, author={Yuchen Fan and James J Moon}, journal={Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology}, year={2017}, volume={9 1} }