# Partial expansion of a Lipschitz domain and some applications

@article{Gopalakrishnan2011PartialEO, title={Partial expansion of a Lipschitz domain and some applications}, author={Jay Gopalakrishnan and Weifeng Qiu}, journal={Frontiers of Mathematics in China}, year={2011}, volume={7}, pages={249-272} }

We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard vector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated…

## 14 Citations

A Review of Regular Decompositions of Vector Fields: Continuous, Discrete, and Structure-Preserving

- Mathematics
- 2020

We elaborate so-called regular decompositions of vector fields on a three-dimensional Lipschitz domain where the field and its rotation/divergence belong to L2 and where the tangential/normal…

Smoothed projections and mixed boundary conditions

- Mathematics, Computer ScienceMath. Comput.
- 2019

Smoothed projections from Sobolev de Rham complexes are constructed which commute with the exterior derivative, preserve homogeneous boundary conditions along a fixed boundary part, and satisfy uniform bounds for shape-regular families of triangulations and bounded polynomial degree.

Smoothed projections over weakly Lipschitz domains

- Mathematics, Computer ScienceMath. Comput.
- 2019

The collar theorem in the Lipschitz category is used, and the degrees of freedom in finite element exterior calculus are flat chains in the sense of geometric measure theory.

Local Finite Element Approximation of Sobolev Differential Forms

- Computer Science, MathematicsESAIM: Mathematical Modelling and Numerical Analysis
- 2021

This work generalizes the Cl\'ement interpolant and the Scott-Zhang interpolant to finite element differential forms, and derives a broken Bramble-Hilbert Lemma.

A note on stable Helmholtz decompositions in 3D

- MathematicsApplicable Analysis
- 2018

ABSTRACT The stability of Helmholtz decompositions in 3D is known to hold for convex Lipschitz-continuous polyhedral regions and for arbitrary (not necessarily convex) domains of class . In this note…

Nodal auxiliary a posteriori error estimates

- Mathematics, Computer ScienceArXiv
- 2020

The Finite Element Exterior Calculus and Nodal Auxiliary Space Preconditioning framework provides a systematic way to derive explicit residual estimators and estimators based on local problems which are upper and lower bounds of the true error.

Discrete regular decompositions of tetrahedral discrete 1-forms: Discrete regular decompositions of tetrahedral discrete 1-forms

- Physics
- 2019

For a piecewise polynomial finite element space W1p,ΓD (T ) ⊂HΓD (curl,Ω) built on a mesh T of a Lipschitz domain Ω ⊂ R and with vanishing tangential trace on ΓD ⊂ ∂Ω, a discrete regular…

A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations

- Mathematics
- 2018

Abstract In this paper we present and analyze a hybridizable discontinuous Galerkin (HDG) method for a mixed curl–curl formulation of the steady state coercive Maxwell equations. With a discrete…

A Finite Element Method for a Curlcurl-Graddiv Eigenvalue Interface Problem

- Mathematics, Computer ScienceSIAM J. Numer. Anal.
- 2016

This paper analyzes the proposed finite element method for a curlcurl-graddiv eigenvalue interface problem, and obtains the error bounds for eigenvalues which correspond to eigenfunctions in the most interesting interval of the finite element space.

Mixed Finite Element Methods for Addressing Multi-Species Diffusion Using the Stefan-Maxwell Equations

- Mathematics
- 2013

The Stefan-Maxwell equations are a system of nonlinear partial differential equations that describe the diffusion of multiple chemical species in a container. These equations are of particular…

## References

SHOWING 1-10 OF 41 REFERENCES

On traces for H(curl,Ω) in Lipschitz domains

- Mathematics
- 2002

Abstract We study tangential vector fields on the boundary of a bounded Lipschitz domain Ω in R 3 . Our attention is focused on the definition of suitable Hilbert spaces corresponding to fractional…

Construction in a piecewise smooth domain of a function of the class H2 from the value of the conormal derivative

- Mathematics
- 1990

The problem of the construction in a bounded domain Ω ⊂ ℝm with a Lipschitz boundary of a function Φ ∃ H2(Ω), for which the conormal derivative on ∂Ω coincides with the normal component of a given…

A PROOF OF THE INF–SUP CONDITION FOR THE STOKES EQUATIONS ON LIPSCHITZ DOMAINS

- Mathematics
- 2003

The purpose of this paper is to present a rather simple proof of an inequality of Necas9 which is equivalent to the inf–sup condition. This inequality is fundamental in the study of the Stokes…

Polynomial Extension Operators. Part II

- Mathematics, Computer ScienceSIAM J. Numer. Anal.
- 2009

An extension operator is constructed that extends a trace function into a polynomial on the surface of a tetrahedron that satisfies a commutativity property and can be continuously extended to the trace space of H(\mathbf{curl}\,)$.

Smoothed projections in finite element exterior calculus

- Computer Science, MathematicsMath. Comput.
- 2008

The construction of smoothed projections is generalized, such that also non quasi-uniform meshes and essential boundary conditions are covered and the new tool introduced here is a space dependent smoothing operator which commutes with the exterior derivative.

Polynomial extension operators. Part III

- Computer Science, MathematicsMath. Comput.
- 2012

The existence of a polynomial extension operator in the Sobolev space H(div) is proven constructively and the main application is the existence of commuting projectors with good hp-approximation properties.

Approximation by finite element functions using local regularization

- Mathematics
- 1975

The aim ofthis paper is to give an elementary proof of a theorem of approximation of Sobolev spaces H(Q) by fimte éléments without to use classical interpolation The construction which we give hère…

A posteriori error estimates for Maxwell equations

- Computer Science, MathematicsMath. Comput.
- 2008

This paper proves the reliability of a residual type a posteriori error estimator on Lipschitz domains and establishes new error estimates for the commuting quasi-interpolation operators recently introduced in J. Schoberl, Commuting quasi-intersphere operators for mixed finite elements.

Strongly Elliptic Systems and Boundary Integral Equations

- Mathematics
- 2000

Introduction 1. Abstract linear equations 2. Sobolev spaces 3. Strongly elliptic systems 4. Homogeneous distributions 5. Surface potentials 6. Boundary integral equations 7. The Laplace equation 8.…

Elliptic Problems in Nonsmooth Domains

- Mathematics
- 1985

Foreword Preface 1. Sobolev spaces 2. Regular second-order elliptic boundary value problems 3. Second-order elliptic boundary value problems in convex domains 4. Second-order boundary value problems…