- Published 2005 in Theor. Comput. Sci.

The Partial Digest problem asks for the coordinates of m points on a line such that the pairwise distances of the points form a given multiset of (m 2 ) distances. Partial Digest is a well-studied problem with important applications in physical mapping of DNA molecules. Its computational complexity status is open. Input data for Partial Digest from real-life experiments are always prone to error, which suggests to study variations of Partial Digest that take this fact into account. In this paper, we study the computational complexity of Partial Digest variants that model three different error types that can occur in the data: additional distances, missing distances, and erroneous fragment lengths. We show that these variations are NP-hard, hard to approximate, and strongly NP-hard, respectively. © 2005 Elsevier B.V. All rights reserved.

Showing 1-10 of 29 references

Highly Influential

20 Excerpts

Highly Influential

7 Excerpts

Highly Influential

7 Excerpts

Highly Influential

10 Excerpts

Highly Influential

6 Excerpts

Highly Influential

5 Excerpts

Highly Influential

6 Excerpts

Highly Influential

9 Excerpts

Highly Influential

4 Excerpts

Highly Influential

15 Excerpts

@article{Cieliebak2005PartialDI,
title={Partial Digest is hard to solve for erroneous input data},
author={Mark Cieliebak and Stephan Eidenbenz and Paolo Penna},
journal={Theor. Comput. Sci.},
year={2005},
volume={349},
pages={361-381}
}