Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology

@article{Stroppel2009ParabolicCO,
  title={Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology},
  author={C. Stroppel},
  journal={Compositio Mathematica},
  year={2009},
  volume={145},
  pages={954 - 992}
}
  • C. Stroppel
  • Published 2009
  • Mathematics
  • Compositio Mathematica
Abstract For a fixed parabolic subalgebra 𝔭 of $\mathfrak {gl}(n,\mathbb {C})$ we prove that the centre of the principal block 𝒪0𝔭 of the parabolic category 𝒪 is naturally isomorphic to the cohomology ring H*(ℬ𝔭) of the corresponding Springer fibre. We give a diagrammatic description of 𝒪0𝔭 for maximal parabolic 𝔭 and give an explicit isomorphism to Braden’s description of the category PervB(G(k,n)) of Schubert-constructible perverse sheaves on Grassmannians. As a consequence Khovanov’s… Expand
105 Citations
Fukaya-Seidel categories of Hilbert schemes and parabolic category $\mathcal{O}$
2-row Springer Fibres and Khovanov Diagram Algebras for Type D
A GRAPHICAL CALCULUS FOR 2-BLOCK SPALTENSTEIN VARIETIES
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 92 REFERENCES
...
1
2
3
4
5
...