Paired bondage in trees

@article{Raczek2008PairedBI,
  title={Paired bondage in trees},
  author={Joanna Raczek},
  journal={Discrete Mathematics},
  year={2008},
  volume={308},
  pages={5570-5575}
}
Let G = (V, E) be a graph with δ(G) ≥ 1. A set D ⊆ V is a paired dominating set if D is dominating, and the induced subgraph 〈D〉 contains a perfect matching. The paired domination number of G, denoted by γp(G), is the minimum cardinality of a paired dominating set of G. The paired bondage number, denoted by bp(G), is the minimum cardinality among all sets of edges E ′ ⊆ E such that δ(G − E ) ≥ 1 and γp(G − E ) > γp(G). We say that G is a γp-strongly stable graph if, for all E ′ ⊆ E , either γp… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Fundamentals of Domination in Graphs

  • T. W. Haynes, S. T. Hedetniemi, P. J. Slater
  • Marcel Dekker Inc., New York
  • 1998
Highly Influential
1 Excerpt

The bondage number of four domination parameters for trees

  • Y. Wu, Q. Fan
  • J. Math., Wuchan Univ. 24
  • 2004
1 Excerpt

Ding-Zhu

  • H. Qiao, L. Kang, M. Cardei
  • Paired-domination of trees, J. Global Optim. 25
  • 2003
1 Excerpt

Paired-domination and the paired-domatic number

  • T. W. Haynes, P. J. Slater
  • Congr. Numer. 109
  • 1995
2 Excerpts

A characterization of trees in which no edge is essential to the domination number

  • B. L. Hartnell, D. F. Rall
  • Ars Combin. 33
  • 1992
2 Excerpts

Similar Papers

Loading similar papers…