PREDIKSI INCIDENCE DENGUE HEMORRHAGIC FEVER (DHF) MENGGUNAKAN JARINGAN SARAF TIRUAN (ARTIFIAL NEURAL NETWORK)

@inproceedings{Fernanda2018PREDIKSIID,
  title={PREDIKSI INCIDENCE DENGUE HEMORRHAGIC FEVER (DHF) MENGGUNAKAN JARINGAN SARAF TIRUAN (ARTIFIAL NEURAL NETWORK)},
  author={S.Si M.Si Jerhi Wahyu Fernanda and Forman Novrindo Sidjabat},
  year={2018}
}
Time series analysis is one of the statistical methods used as tools to predict the incidence of a disease. Autoregressive Integrated Moving Average (ARIMA) model is a frequently used method. However, this method has some disadvantages as there are assumptions that must be met and can not explain nonlinear cases. This condition requires a more flexible method, namely Artificial Neural Network (ANN). This study aims to apply the ANN method to predict the incidence of Dengue Hemorrhagic Fever DHF… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-8 OF 8 REFERENCES

Kepadatan Jentik Nyamuk Aedes sp . ( House Index ) sebagai indikator Surveillance Vektor Demam Berdarah Dengue di Semarang

U. Khairunisa, N. E. Wahyuningsih
  • Jurnal Kesehatan Masyarakat
  • 2017

Time series analysis of malaria in Afghanistan : using ARIMA models to predict future trends in incidence

J. A. Lewnard, S. Parikh, V. E. Pitzer
  • Malaria Journal .
  • 2016

A Comparison of ARIMA , Neural Network and Linear Regression Models for the prediction of Infant Mortality Rate

C. Eswaran, R. Logeswaran