POTENTIAL THEORY ON LIPSCHITZ DOMAINS IN RIEMANNIAN MANIFOLDS : L p , HARDY , AND HÖLDER SPACE RESULTS

@inproceedings{Mitrea2001POTENTIALTO,
  title={POTENTIAL THEORY ON LIPSCHITZ DOMAINS IN RIEMANNIAN MANIFOLDS : L p , HARDY , AND H{\"O}LDER SPACE RESULTS},
  author={Marius Mitrea and Michael Taylor},
  year={2001}
}
Highly Cited
This paper has 29 citations. REVIEW CITATIONS
21 Citations
25 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 25 references

Boundary layer methods for Lipschitz domains in Riemannian manifolds

  • M. Mitrea, M. Taylor
  • J. Funct. Anal.,
  • 1999

Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, in preparation

  • M. Mitrea, M. Taylor
  • 1999

Tools for PDE: Pseudodifferential Operators

  • M. Taylor
  • Paradifferential Operators, and Layer Potentials…
  • 1999
1 Excerpt

Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains

  • E. Fabes, O. Mendez, M. Mitrea
  • J. Funct. Anal
  • 1998

Verchota, Area integral estimates for higher order elliptic equations and systems, Ann

  • B. Dahlberg, C. Kenig, G. J. Pipher
  • Inst. Fourier Grenoble,
  • 1997

Functional Analysis

  • R. E. Edwards
  • Theory and Applications, Corrected reprint of the…
  • 1995
1 Excerpt

On Dahlberg’s Lusin area integral theorem

  • M. Mitrea
  • Proc. A.M.S
  • 1995

Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems

  • C. Kenig
  • AMS Regional Conferences Series in Mathematics…
  • 1994
2 Excerpts

Similar Papers

Loading similar papers…