Overcoming physical constraints in bone engineering: 'the importance of being vascularized'.


Bone plays several physiological functions and is the second most commonly transplanted tissue after blood. Since the treatment of large bone defects is still unsatisfactory, researchers have endeavoured to obtain scaffolds able to release growth and differentiation factors for mesenchymal stem cells, osteoblasts and endothelial cells in order to obtain faster mineralization and prompt a reliable vascularization. Nowadays, the application of osteoblastic cultures spans from cell physiology and pharmacology to cytocompatibility measurement and osteogenic potential evaluation of novel biomaterials. To overcome the simple traditional monocultures in vitro, co-cultures of osteogenic and vasculogenic precursors were introduced with very interesting results. Increasingly complex culture systems have been developed, where cells are seeded on proper scaffolds and stimulated so as to mimic the physiological conditions more accurately. These bioreactors aim at enabling bone regeneration by incorporating different cells types into bio-inspired materials within a surveilled habitat. This review is focused on the most recent developments in the organomimetic cultures of osteoblasts and vascular endothelial cells for bone tissue engineering.

DOI: 10.1177/0885328215616749

Cite this paper

@article{Genova2016OvercomingPC, title={Overcoming physical constraints in bone engineering: 'the importance of being vascularized'.}, author={Tullio Genova and Luca Munaron and Stefano Carossa and Federico Mussano}, journal={Journal of biomaterials applications}, year={2016}, volume={30 7}, pages={940-51} }