Oscillation and Variation for Singular Integrals in Higher Dimensions

@inproceedings{Campbell2003OscillationAV,
  title={Oscillation and Variation for Singular Integrals in Higher Dimensions},
  author={James T. P. Campbell and Roger L. Jones and Karin Reinhold and M{\'a}t{\'e} Wierdl},
  year={2003}
}
In this paper we continue our investigations of square function inequalities in harmonic analysis. Here we investigate oscillation and variation inequalities for singular integral operators in dimensions d ≥ 1. Our estimates give quantitative information on the speed of convergence of truncations of a singular integral operator, including upcrossing and λ jump inequalities. 

From This Paper

Topics from this paper.
6 Citations
9 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Introduction to Fourier Analysis on Euclidean spaces

  • E. M. Stein, G. Weiss
  • 1971
Highly Influential
3 Excerpts

The p-variation of partial sum processes and the empirical process

  • J. Qian
  • Ann. of Prob.,
  • 1998
1 Excerpt

Variation in probability, ergodic theory and analysis

  • M. Akcoglu, R. L. Jones, P. Schwartz
  • Illinois J. Math
  • 1998
2 Excerpts

Wierdl, Oscillation in ergodic theory

  • R. Jones, R. Kaufmann, M. J. Rosenblatt
  • Ergodic Theory and Dyn. Sys
  • 1998
2 Excerpts

Weak-type (1,1) bounds for rough operators II

  • M. Christ, J. L. Rubio de Francia
  • Invent. Math
  • 1988
1 Excerpt

Intertwining operators on semi-simple groups

  • A. W. Knapp, E. M. Stein
  • Ann. of Math
  • 1971
1 Excerpt

Singular integrals and differentiability properties of functions

  • E. M. Stein
  • MR
  • 1970
1 Excerpt

A unified theory of Hilbert transforms and ergodic theorems

  • M. Cotlar
  • Rev. Math. Cuyana,
  • 1955
2 Excerpts

Similar Papers

Loading similar papers…