Orthogonal Polynomials with Orthogonal Derivatives

  title={Orthogonal Polynomials with Orthogonal Derivatives},
  author={Michael S Webster},
p(x)xdx, Pi = I q(x)xdx, i = 0, 1, • • • , a J a p(x) ^ 0, q(x) ^ 0, a0> 0, j80 > 0. Lebesgue integrals are used and the interval {a, b)\ may be finite or infinite. We are concerned with the following assertion: THEOREM. If {<f>n(x)} and {<t>n (x)} are orthogonal systems of polynomials, then {<l>n(x)} may be reduced to the classical polynomials of Jacobi, Laguerre, or Hermite by means of a linear transformation on x. 

From This Paper

Topics from this paper.
4 Citations
4 References
Similar Papers


Publications citing this paper.


Publications referenced by this paper.
Showing 1-4 of 4 references

On the zeros of Jacobi polynomials with applications

  • M Webster
  • Duke Mathematical Journal
  • 1937

The relation of the classical orthogonal polynomials to the polynomials of Appell

  • J Shohat
  • || I. Sheffer, A differential equation for Appell…
  • 1935

Orthogonale Polynomsysterne mit einer besonderen Gestalt der erzeugenden Funktion

  • J Meixner
  • Journal of the London Mathematical Society
  • 1934

Théorie Générale des Polynômes Orthogonaux de Tchebichef

  • H J Shohat
  • Théorie Générale des Polynômes Orthogonaux de…
  • 1934

Similar Papers

Loading similar papers…