Orange Peels and Fresnel Integrals

@article{Bartholdi2012OrangeP,
  title={Orange Peels 
and Fresnel Integrals},
  author={L. Bartholdi and Andr'e G. Henriques},
  journal={The Mathematical Intelligencer},
  year={2012},
  volume={34},
  pages={1-3}
}
  • L. Bartholdi, Andr'e G. Henriques
  • Published 2012
  • Mathematics
  • The Mathematical Intelligencer
  • Cut the skin of an orange along a thin spiral of constant width and place it flat on a table. A natural breakfast question, for a mathematician, is what shape the spiral peel will have when flattened out. We derive a formula that, for a given cut width, describes the corresponding spiral’s shape. 
    1 Citations

    Figures from this paper.

    References

    SHOWING 1-4 OF 4 REFERENCES
    The Euler spiral: a mathematical history
    • 45
    • PDF
    Michael Heal , George Labahn , Stefan M . Vorkoetter , James McCarron , and Paul DeMarco , Maple 10 Programming Guide , Maplesoft , Waterloo ON , Canada ,
    • 2002
    Profillidis, Railway management and engineering
    • Ashgate Publishing Ltd.,
    • 2006
    The Definite Integral Symbol
    • 1