Optimizing the smoothed bootstrap

  title={Optimizing the smoothed bootstrap},
  author={Suojin Wang},
  journal={Annals of the Institute of Statistical Mathematics},
  • Suojin Wang
  • Published 1995
  • Mathematics
  • Annals of the Institute of Statistical Mathematics
In this paper we develop the technique of a generalized rescaling in the smoothed bootstrap, extending Silverman and Young's idea of shrinking. Unlike most existing methods of smoothing, with a proper choice of the rescaling parameter the rescaled smoothed bootstrap method produces estimators that have the asymptotic minimum mean (integrated) squared error, asymptotically improving existing bootstrap methods, both smoothed and unsmoothed. In fact, the new method includes existing smoothed… Expand

Figures and Tables from this paper

On smoothed bootstrap for density functionals
We analyze, from both theoretical and practical point of view, the use of the smoothed bootstrap in the estimation of a functional T(f) of the underlying density. We consider a plug-in approach basedExpand
On multivariate smoothed bootstrap consistency
This paper deals with the convergence in Mallows metric for classical multivariate kernel distribution function estimators. We prove the convergence in Mallows metric of a locally orientated kernelExpand
Edgeworth expansions for nonparametric distribution estimation with applications
Abstract In this paper, we will investigate the nonparametric estimation of the distribution function F of an absolutely continuous random variable. Two methods are analyzed: the first one based onExpand
A Comparison of Higher-Order Bias Kernel Density Estimators
Abstract We consider many kernel-based density estimators, all theoretically improving bias from O(h 2), as the smoothing parameter h → 0, to O(h 4). Examples include higher-order kernels, variableExpand
A bootstrap version of the residual-based smooth empirical distribution function
In this paper, we consider estimating the error distribution in a non-parametric regression model by a smooth version of the empirical distribution function of residuals. We show that a classicalExpand
Robust bootstrap forecast densities for GARCH returns and volatilities
ABSTRACT Bootstrap procedures are useful to obtain forecast densities for both returns and volatilities in the context of generalized autoregressive conditional heteroscedasticity models. In thisExpand
Chung–Smirnov property for Bernstein estimators of distribution functions
In this article, we show that the Chung–Smirnov property holds for Bernstein estimators of distribution functions under different conditions on the underlying distribution to be estimated. In doingExpand
Step Density Estimation and Bootstrap Resampling
This dissertation aims to provide a history of applied mathematics and statistics from 1989 to 2002, a period chosen in order to explore its roots as well as specific cases up to and including the year of the United States invasion of Iraq. Expand
Hierarchical Bayesian Bootstrap for Heterogeneous Treatment Effect Estimation
A major focus of causal inference is the estimation of heterogeneous average treatment effects (HTE) - average treatment effects within strata of another variable of interest. This involvesExpand
Insurance Subsidies, Technological Change, and Yield Resiliency in Agriculture
Innovation in the agricultural sector will determine our ability to reduce food insecurity and feed nine billion people by 2050. Concomitantly, most of the world’s agricultural crop production isExpand


Smoothing the Bootstrap
The question of smoothing when using the non-parametric version of the bootstrap for estimation of population functionals is reconsidered. In general, there is no global preference for proceduresExpand
The bootstrap: To smooth or not to smooth?
SUMMARY The bootstrap and smoothed bootstrap are considered as alternative methods of estimating properties of unknown distributions such as the sampling error of parameter estimates. Criteria areExpand
Using non stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives
Improved kernel-based estimates of integrated squared density derivatives are obtained by reinstating non-stochastic terms that have previously been omitted, and using the bandwidth toExpand
On correcting for variance inflation in kernel density estimation
It is a simple matter to correct for the well-known variance inflation property of nonnegative kernel density estimates whereby the estimated distribution's variance exceeds that of the sample. ButExpand
Exact convergence rate of bootstrap quantile variance estimator
SummaryIt is shown that the relative error of the bootstrap quantile variance estimator is of precise order n-1/4, when n denotes sample size. Likewise, the error of the bootstrap sparsity functionExpand
Generalized jackknifing and higher order kernels
One way of improving the performance, at least in theory, of kernel estimators of curves such as probability densities, regression functions and spectral densities is to use “higher order” kernelExpand
The jackknife, the bootstrap, and other resampling plans
The Jackknife Estimate of Bias The Jackknife Estimate of Variance Bias of the Jackknife Variance Estimate The Bootstrap The Infinitesimal Jackknife The Delta Method and the Influence FunctionExpand
Testing for multimodality
Abstract Exploratory methods for investigating the structure of a population, such as density estimation, often suggest the presence of modes. These modes can either be spurious artifacts of samplingExpand
Density estimation for statistics and data analysis
Introduction. Survey of Existing Methods. The Kernel Method for Univariate Data. The Kernel Method for Multivariate Data. Three Important Methods. Density Estimation in Action.
A Leisurely Look at the Bootstrap, the Jackknife, and
An apparatus for the in-situ detection of ions in a beam of an ion implanter device includes a mass spectrometer device having inner and outer walls and, a system for generating and directing an ionExpand