Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis.

Abstract

Supplement of Fe(2+) into fermentation medium was utilized as a tool to optimize the iron-mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L(-)(1) of surfactin was produced using an iron-enriched minimal salt (MS) medium amended with an optimal Fe(2+) dosage of 4.0 mM, leading to 8-fold and 10-fold increase in cell concentration and surfactin yield, respectively, as compared to those without Fe(2+) supplement. In addition to resulting in an optimal production yield of surfactin, a supplement of 4.0 mM of Fe(2+) also propelled maximum overall surfactin production rate to a highest value of 24 mg L(-)(1) h(-)(1). Our results also show that production of surfactin followed a growth-associated kinetic model. The best yield coefficient estimated from the model was ca. 162 mg surfactin (g dry cell)(-)(1). The supernatant of the iron-enriched culture of B. subtilis ATCC 21332 exhibited the ability to emulsify kerosene and achieved a maximum emulsion index (E(24)) of 80% for culture supplemented with 4.0 mM of Fe(2+). Comparison of emulsion index and the corresponding surfactin production indicates that the emulsification activity was essentially contributed by surfactin.

Cite this paper

@article{Wei2004OptimizingIS, title={Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis.}, author={Yu-Hong Wei and Li-Fen Wang and Jo-Shu Chang}, journal={Biotechnology progress}, year={2004}, volume={20 3}, pages={979-83} }