Optimally Solving a Transportation Problem Using Voronoi Diagrams

@inproceedings{Gei2012OptimallySA,
  title={Optimally Solving a Transportation Problem Using Voronoi Diagrams},
  author={Darius Gei\ss and Rolf Klein and Rainer Penninger},
  booktitle={COCOON},
  year={2012}
}
We consider the following variant of the well-known Monge-Kantorovich transportation problem. Let S be a set of n point sites in R. A bounded set C ⊂ R is to be distributed among the sites p ∈ S such that (i), each p receives a subset Cp of prescribed volume and (ii), the average distance of all points z of C from their respective sites p is minimized. In our model, volume is quantified by a measure μ, and the distance between a site p and a point z is given by a function dp(z). Under quite… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Kantorovich . On a problem of Monge ( In Russian )

L.
Lect . Notes Comp . Sci . • 2012

Optimally solving a general transportation problem using Voronoi diagrams

D. Geiß, R. Klein, R. Penninger
In: W. Didimo and G. Liotta (Eds.), Abstracts 28th Europ. Workshop Computational Geom. (EuroCG’12), Assisi, Italy, • 2012
View 1 Excerpt

Optimally solving a transportation problem using Voronoi diagrams

D. Geiß, R. Klein, R. Penninger
To appear in J. Gudmundsson, J. Mestre, and A. Viglas (Eds.), Computing and Combinatorics. Proc. 14 18th Ann. Int. Computing and Combinatorics Conf. (COCOON), Sidney, August 2012. Lect. Notes Comp. Sci., Vol. 6842, Springer • 2012
View 1 Excerpt

Optimal Transport

C. Villani
Old and New, volume 338 of Grundlehren der mathematischen Wissenschaften. Springer • 2009
View 1 Excerpt

Geometry Helps in Matching

SIAM J. Comput. • 1988
View 2 Excerpts

On a problem of Monge (In Russian)

L. Kantorovich
Uspekhi Math. Nauk. 3 • 1948
View 1 Excerpt

Mémoire sur les déblais et les remblais des systèmes continus ou discontinus

P. Appell
Mémoires présentes par divers Savants à l’Academie des Sciences de l’Institut de France 29 • 1887
View 1 Excerpt

Similar Papers

Loading similar papers…