# Optimal resources for topological two-dimensional stabilizer codes : Comparative study

@article{Bombin2007OptimalRF, title={Optimal resources for topological two-dimensional stabilizer codes : Comparative study}, author={H. Bombin and Miguel Angel Martin-Delgado}, journal={Physical Review A}, year={2007}, volume={76}, pages={012305} }

We study the resources needed to construct topological two-dimensional stabilizer codes as a way to estimate in part their efficiency, and this leads us to perform a comparative study of surface codes and color codes. This study clarifies the similarities and differences between these two types of stabilizer code. We compute the topological error-correcting rate C:=n/d{sup 2} for surface codes C{sub s} and color codes C{sub c} in several instances. On the torus, typical values are C{sub s}=2… Expand

#### 72 Citations

Three-dimensional surface codes: Transversal gates and fault-tolerant architectures

- Mathematics, Physics
- Physical Review A
- 2019

One of the leading quantum computing architectures is based on the two-dimensional (2D) surface code. This code has many advantageous properties such as a high error threshold and a planar layout of… Expand

Numerical and analytical bounds on threshold error rates for hypergraph-product codes

- Mathematics, Computer Science
- ArXiv
- 2018

Analytically and numerically decoding properties of finite rate hypergraph-product quantum LDPC codes obtained from random (3,4)-regular Gallager codes are studied, with a simple model of independent X and Z errors. Expand

Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

- Physics
- 2010

We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction… Expand

Multi-path Summation for Decoding 2D Topological Codes

- Computer Science, Physics
- 2017

This work uses belief propagation and a novel algorithm for producing edge weights to increase the utility of minimum-weight perfect matching for decoding surface codes, and obtains a threshold larger than the threshold achieved by previous matching-based decoders. Expand

Topological color codes and two-body quantum lattice Hamiltonians

- Physics
- 2010

Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with… Expand

Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout

- Physics
- 2016

We introduce a class of 3D color codes, which we call stacked codes, together with a fault-tolerant transformation that will map logical qubits encoded in two-dimensional (2D) color codes into… Expand

The surface code with a twist

- Computer Science, Physics
- 2016

A patch-based encoding involving a modified twist of defect-based logical encodings of a new variety called twists is investigated, and the smallest triangle code can demonstrate high-pseudothreshold fault-tolerance to depolarizing noise using just 13 physical qubits. Expand

Improved quantum hypergraph-product LDPC codes

- Mathematics, Physics
- 2012 IEEE International Symposium on Information Theory Proceedings
- 2012

The rotated lattices specified by two integer-valued periodicity vectors are introduced for the usual toric codes and several related algebraic constructions are suggested which increase the rate of the existing hypergraph-product codes by up to four times. Expand

Quantum computing by color-code lattice surgery

- Physics, Mathematics
- 2014

We demonstrate how to use lattice surgery to enact a universal set of fault-tolerant quantum operations with color codes. Along the way, we also improve existing surface-code lattice-surgery methods.… Expand

Title Distance Verification for Classical and Quantum LDPC Codes Permalink

- 2016

The techniques of distance verification known for general linear codes are re-applied to quantum stabilizer codes. Then distance verification is addressed for classical and quantum LDPC codes. New… Expand

#### References

SHOWING 1-10 OF 16 REFERENCES

Topological quantum memory

- Physics
- 2002

We analyze surface codes, the topological quantum error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on a surface of nontrivial topology, and… Expand

Topological Quantum Error Correction with Optimal Encoding Rate

- Physics, Computer Science
- ArXiv
- 2006

It is proved the existence of topological quantum error correcting codes with encoding rates asymptotically approaching the maximum possible value and a class of regular toric codes that are optimal. Expand

Topological fault-tolerance in cluster state quantum computation

- Computer Science, Physics
- 2007

A fault-tolerant version of the one-way quantum computer using a cluster state in three spatial dimensions using topologically protected quantum gates and equivalence transformations that can be used to simplify fault-Tolerant circuits and to derive circuit identities in a topological manner are described. Expand

String-net condensation: A physical mechanism for topological phases

- Physics
- 2005

We show that quantum systems of extended objects naturally give rise to a large class of exotic phases---namely topological phases. These phases occur when extended objects, called ``string-nets,''… Expand

Exact topological quantum order in D=3 and beyond : Branyons and brane-net condensates

- Physics
- 2007

We construct an exactly solvable Hamiltonian acting on a 3-dimensional lattice of spin-$\frac 1 2$ systems that exhibits topological quantum order. The ground state is a string-net and a membrane-net… Expand

Class of quantum error-correcting codes saturating the quantum Hamming bound.

- Physics, Medicine
- Physical review. A, Atomic, molecular, and optical physics
- 1996

Methods for analyzing quantum error-correcting codes are developed, and these methods are used to construct an infinite class of codes saturating the quantum Hamming bound. Expand

Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces.

- Physics, Medicine
- Physical review. B, Condensed matter
- 1990

The ground-state degeneracy provides a new quantum number in addition to the Hall conductance, characterizing different phases of the FQH systems, and the Ginzburg-Landau theory is a dual theory of the U(1) Chern-Simons topological theory. Expand

Quantum codes on a lattice with boundary

- Mathematics, Physics
- 1998

A new type of local-check additive quantum code is presented. Qubits are associated with edges of a 2-dimensional lattice whereas the stabilizer operators correspond to the faces and the vertices.… Expand

Topological characterization of quantum phase transitions in a spin-1/2 model.

- Physics, Medicine
- Physical review letters
- 2007

The quantum phase transitions of the system at zero temperature are found to be of topological type and can be characterized by nonlocal string order parameters (SOP) and in appropriate dual representations, these SOP become local order parameters and the basic concept of Landau theory of continuous phase transition can be applied. Expand

Adiabatic preparation of topological order.

- Physics, Medicine
- Physical review letters
- 2008

It is shown that a system of n spins forming a lattice on a Riemann surface can undergo a second order quantum phase transition between a spin-polarized phase and a string-net condensed phase, an example of a quantum phase Transition between magnetic and topological order. Expand