Optimal adaptive nonconforming FEM for the Stokes problem


This paper presents an optimal nonconforming adaptive finite element algorithm and proves its quasi-optimal complexity for the Stokes equations with respect to natural approximation classes. The proof does not explicitly involve the pressure variable and follows from a novel discrete Helmholtz decomposition of deviatoric functions. Mathematics Subject Classification (2000) Primary 65N12 · 65N15 · 65N30 · 65N50 · 65Y20

DOI: 10.1007/s00211-012-0490-8

Extracted Key Phrases

1 Figure or Table

Cite this paper

@article{Carstensen2013OptimalAN, title={Optimal adaptive nonconforming FEM for the Stokes problem}, author={Carsten Carstensen and Daniel Peterseim and Hella Rabus}, journal={Numerische Mathematik}, year={2013}, volume={123}, pages={291-308} }