Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature

@inproceedings{Feschet1999OptimalTC,
  title={Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature},
  author={Fabien Feschet and Laure Tougne},
  booktitle={DGCI},
  year={1999}
}
With the definition of discrete lines introduced by Réveillès [REV91], there has been a wide range of research in discrete geometry and more precisely on the study of discrete lines. By the use of the linear time segment recognition algorithm of Debled and Réveillès [DR94], Vialard [VIA96a] has proposed a O(l) algorithm for computing the tangent in one point of a discrete curve where l is the average length of the tangent. By applying her algorithm to n points of a discrete curve, the… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

Citations

Publications citing this paper.
Showing 1-10 of 51 extracted citations

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Chemins Euclidiens : un modèle de représentation des contours discrets

  • ANNE VIALARD.
  • 1996

Dr95

  • June
  • I. DEBLED-RENNESSON. Étude et reconnaissance de…
  • 1994

Digital curve estimation

  • MARCEL WORRING, ARNOLD W. M. SMEULDERS.
  • CVGIP : Image Understanding
  • 1993

Decomposition of discrete curves into piecewise straight segments in linear time

  • CHO-HUAK TEH, T. ROLAND
  • Contemporary Mathematics
  • 1991

Géométrie discrète en analyse d ’ images

  • P. J.
  • 1991

REVEILLES . Géométrie discrète , calcul en nombres entiers et algorithmique

  • A. W. M. SMEULDERS, L. DORST
  • 1991

CHIN . On the detection of dominant points on digital curves

  • ANNE VIALARD.
  • IEEE Transactions on Pattern Analysis and Machine…
  • 1989

Similar Papers

Loading similar papers…