# Optimal Size of Linear Matrix Inequalities in Semidefinite Approaches to Polynomial Optimization

@article{Averkov2018OptimalSO,
title={Optimal Size of Linear Matrix Inequalities in Semidefinite Approaches to Polynomial Optimization},
journal={SIAM J. Appl. Algebra Geom.},
year={2018},
volume={3},
pages={128-151}
}
• G. Averkov
• Published 22 June 2018
• Mathematics
• SIAM J. Appl. Algebra Geom.
The abbreviations LMI and SOS stand for linear matrix inequality' and sum of squares', respectively. The cone $\Sigma_{n,2d}$ of SOS polynomials in $n$ variables of degree at most $2d$ is known to have a semidefinite extended formulation with one LMI of size $\binom{n+d}{n}$. In other words, $\Sigma_{n,2d}$ is a linear image of a set described by one LMI of size $\binom{n+d}{n}$. We show that $\Sigma_{n,2d}$ has no semidefinite extended formulation with finitely many LMIs of size less than…
Semidefinite programming (SDP) is the task of optimizing a linear function over the common solution set of finitely many linear matrix inequalities (LMIs). For the running time of SDP solvers, the
• Mathematics
Mathematical Programming
• 2022
Conditional Sums-of-AM/GM-Exponentials (conditional SAGE) is a decomposition method to prove nonnegativity of a signomial or polynomial over some subset X of real space. In this article, we undertake
• Mathematics
• 2020
The $${\mathcal {S}}$$ S -cone provides a common framework for cones of polynomials or exponential sums which establish non-negativity upon the arithmetic-geometric inequality, in particular for sums
The main result says that whenever a convex cone has a certain neighborliness property, then it does not have a lifted representation using a finite product of cones, each of which has only short chains of faces.
• Mathematics
• 2018
Abstract For a non-empty, finite subset A⊆N0n $\mathcal{A} \subseteq \mathbb{N}_0^n$ let Csonc(𝒜) ∈ ℝ[x1, . . . , xn] be the cone of sums of non-negative circuit polynomials with support 𝒜. We
To demonstrate the discrepancy between second-order cone and semidefinite programming, Hamza Fawzi showed that the cone S_+^3 of symmetric positive semidefinite matrices of size 3 is not second-order
• Mathematics
Math. Comput.
• 2021
This work derives from the duality theory an approximation result of non-negative univariate polynomials and shows that a SONC analogue of Putinar's Positivstellensatz does not exist even in the univariate case.
• Computer Science
• 2022
Numerical results show that the ideal-sparse bounds are often tighter and much faster to compute than their dense analogs, when applied to the problem of bounding nonnegative- and completely positive matrix factorization ranks.
• Mathematics
• 2022
A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone. Cones that are homogeneous and self-dual are called symmetric. Conic optimization problems over
• Mathematics
ArXiv
• 2022
A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone. Cones that are homogeneous and self-dual are called symmetric. Conic optimization problems over

## References

SHOWING 1-10 OF 48 REFERENCES

• Mathematics
Math. Program.
• 2015
These representations allow us to use semidefinite programming to solve the linear cone programs associated with these convex cones as well as their (less well understood) dual cones.
• Mathematics
Math. Program.
• 2015
The main mathematical properties of psd rank are surveyed, including its geometry, relationships with other rank notions, and computational and algorithmic aspects.
• Mathematics
Math. Program.
• 2016
It is proved that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most, establishing a conjecture of Laurent.
A convergent hierarchy of semidefinite relaxations is constructed for the cones of P(K), R(K) and RA (K) (like interiors, closeness, duality, memberships), and it is shown how to check whether the cones intersect affine subspaces and if they do, how to get a point in the intersections.
• Mathematics
• 2010
We determine new sufficient conditions in terms of the coefficients for a polynomial $${f\in \mathbb{R}[\underline{X}]}$$ of degree 2d (d ≥ 1) in n ≥ 1 variables to be a sum of squares of
• Mathematics
SIAM J. Optim.
• 2015
A representation-theoretic framework is presented to study equivariant PSD lifts of a certain class of symmetric polytopes known as orbitopes which respect the symmetries of the polytope.
• Mathematics
Math. Program.
• 2018
This paper relates the maximum semidefinite and linear extension complexity of a family of polytopes to the cardinality of this family and the minimum pairwise Hausdorff distance of its members and shows that the linear extension complex of every d-dimensional 0/1-polytope is bounded from above by O(2dd).
• Mathematics, Computer Science
STOC
• 2015
It is proved that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1) sum-of-squares relaxations, and this result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes.
• Mathematics
Math. Oper. Res.
• 2017
This paper shows that one can construct an equivariant psd lift of the regular 2^n-gon of size 2n-1, which is exponentially smaller than the psd Lift of the sum-of-squares hierarchy, and proves that the construction is essentially optimal.