Optimal Runge – Kutta Methods for First Order Pseudospectral Operators

@inproceedings{Mead1999OptimalR,
  title={Optimal Runge – Kutta Methods for First Order Pseudospectral Operators},
  author={Jodi L. Mead and Rosemary A. Renaut},
  year={1999}
}
New Runge–Kutta methods for method of lines solution of systems of ordinary differential equations arising from discretizations of spatial derivatives in hyperbolic equations, by Chebyshev or modified Chebyshev methods, are introduced. These Runge–Kutta methods optimize the time step necessary for stable solutions, while holding dispersion and dissipation fixed. It is found that maximizing dispersion minimizes dissipation, and vice versa. Optimal methods with respect to large stability… CONTINUE READING
8 Citations
16 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 16 references

The Runge–Kutta theory in a nutshell

  • P. Albrecht
  • SIAM J. Numer. Anal. 33(5),
  • 1996
Highly Influential
4 Excerpts

Methods for Problems in Computational Aeroacoustics

  • J. L. Mead, Numerical
  • Ph.D. dissertation,
  • 1998
6 Excerpts

A modified Chebyshev pseudospectral method with an O ( N − 1 ) time step restriction

  • J. Tal-Ezer
  • J . Comput . Phys .
  • 1995

Explicit Runge – Kutta ( – Nystr ̈ om ) methods with reduced phase errors for computing oscillating solutions

  • P. J. Van Der Houwen, B. P. Sommeijer
  • SIAM J . Numer . Anal .
  • 1995

Solution of Acoustic Workshop Problems by a Spectral Multidomain Method, presented at NASA CP

  • D. A. Kopriva, J. H. Kolias
  • 1995

Mathey, Low-Dissipation and -Dispersion Runge–Kutta Schemes for Computational Acoustics

  • F. Q. Hu, M. Y. Hussaini
  • ICASE Report
  • 1994

One step integration methods with maximum stability regions , Math

  • I. P. E. Kinnmark, W. G. Gray
  • Comput . Simulation
  • 1994

Dispersion-relation-preserving finite difference schemes for computational acoustics

  • C.K.W. Tam, J. C. Webb
  • J. Comput. Phys. 107,
  • 1993

Tal-Ezer, A modified Chebyshev pseudospectral method with an O(N−1) time step restriction

  • J. D. Kosloff
  • J. Comput. Phys. 104,
  • 1993
3 Excerpts

Similar Papers

Loading similar papers…