Optimal Rank-based Testing for Principal Components

Abstract

This paper provides parametric and rank-based optimal tests for eigenvectors and eigenvalues of covariance or scatter matrices in elliptical families. The parametric tests extend the Gaussian likelihood ratio tests of Anderson (1963) and their pseudo-Gaussian robustifications by Tyler (1981, 1983) and Davis (1977), with which their Gaussian versions are shown to coincide, asymptotically, under Gaussian or finite fourth-order moment assumptions, respectively. Such assumptions however restrict the scope to covariance-based principal component analysis. The rank-based tests we are proposing remain valid without such assumptions. Hence, they address a much broader class of problems, where covariance matrices need not exist and principal components are associated with more general scatter matrices. Asymptotic relative efficiencies moreover show that those rank-based tests are quite powerful; when based on van der Waerden or normal scores, they even uniformly dominate the pseudo-Gaussian versions

3 Figures and Tables

Cite this paper

@inproceedings{Hallin2009OptimalRT, title={Optimal Rank-based Testing for Principal Components}, author={Marc Hallin and Davy Paindaveine and Thomas Verdebout}, year={2009} }