Optical influence of ship wakes.

Abstract

The optical variations observed within ship wakes are largely due to the generation of copious amounts of air bubbles in the upper ocean, a fraction of which accumulate as foam at the surface, where they release scavenged surfactants. Field experiments were conducted to test previous theoretical predictions of the variations in optical properties that result from bubble injection in the surface ocean. Variations in remote-sensing reflectance and size distribution of bubbles within the ship-wake zone were determined in three different optical water types: the clear equatorial Pacific Ocean, moderately turbid coastal waters, and very turbid coastal waters, the latter two of which were offshore of New Jersey. Bubbles introduced by moving vessels increased the backscattering in all cases, which in turn enhanced the reflectance over the entire visible and infrared wave bands. The elevated reflectance had different spectral characteristics in the three locations. The color of ship wakes appears greener in the open ocean, whereas little change in color was observed in near-coastal turbid waters, consistent with predictions. Colorless themselves, bubbles increase the reflected radiance and change the color of the ocean in a way that depends on the spectral backscattering and absorption of the undisturbed background waters. For remote observation from aircraft or satellite, the foam and added surfactants further enhance the reflectance to a degree dependent on the illumination and the viewing geometry.

Cite this paper

@article{Zhang2004OpticalIO, title={Optical influence of ship wakes.}, author={Xiaodong Zhang and M. R. M. Lewis and W. Paul Bissett and Bruce Johnson and Dave Kohler}, journal={Applied optics}, year={2004}, volume={43 15}, pages={3122-32} }