Optical implementations, oracle equivalence, and the Bernstein-Vazirani algorithm

  title={Optical implementations, oracle equivalence, and the Bernstein-Vazirani algorithm},
  author={Arvind and Gurpreet Kaur and Geetu Narang},
  journal={Journal of The Optical Society of America B-optical Physics},
We describe a new implementation of the Bernstein-Vazirani algorithm that relies on the fact that the polarization states of classical light beams can be cloned. We explore the possibility of computing with waves and discuss a classical optical model capable of implementing any algorithm (on n qubits) that does not involve entanglement. The Bernstein-Vazirani algorithm (with a suitably modified oracle), wherein a hidden n-bit vector is discovered by one oracle query as against n oracle queries… 
Determining the parity of a permutation using an experimental NMR qutrit
Abstract We present the NMR implementation of a recently proposed quantum algorithm to find the parity of a permutation. In the usual qubit model of quantum computation, it is widely believed that
A Thermodynamic Turing Machine: Artificial Molecular Computing Using Classical Reversible Logic Switching Networks
The method is used to provide an order n execution speed method for the Gaussian elimination step in the Simon problem and behaves like an artificial molecule where solutions to a problem are found by evolving the classical circuits from one thermodynamic equilibrium state to another.
Hamilton's turns as a visual tool kit for designing single-qubit unitary gates
Unitary evolutions of a qubit are traditionally represented geometrically as rotations of the Bloch sphere, but the composition of such evolutions is handled algebraically through matrix
Parallel database search and prime factorization with magnonic holographic memory devices
In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves
A unified picture of Balance puzzles and Group testing: Some lessons from quantum mechanics for the pandemic
Balance (Counterfeit coin) puzzles have been part of recreational mathematics for a few decades. A particular type of Counterfeit coin puzzle is known in the literature as the ”Beam balance puzzle”.
Non-volatile magnonic logic circuits engineering
We propose a concept of magnetic logic circuits engineering, which takes an advantage of magnetization as a computational state variable and exploits spin waves for information transmission. The
Magnonic holographic devices for special type data processing
In this work, we consider the possibility of building magnetic analog logic devices utilizing spin wave interference for special task data processing. As an example, we consider a multi-terminal
Reconfigurable Plasmonic Logic Gates
Reconfigurable one-, two-, and three-bit plasmonic logic gate configurations have been proposed, which work by covering a straight slot waveguide with materials with tunable dielectric constants,
Implementation of discrete positive operator valued measures on linear optical systems using cosine-sine decomposition
Positive operator valued measurements (POVMs) play an important role in efficient quantum communication and computation. While optical systems are one of the strongest candidates for long distance
State transfer with separable optical beams and variational quantum algorithms with classical light
Classical electromagnetic fields and quantum mechanics– both obey the principle of superposition alike. This opens up many avenues for simulation of a large variety of phenomena and algorithms, which


Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem without entanglement on an ensemble quantum computer
Bernstein and Varizani have given the first quantum algorithm to solve the parity problem in which a strong violation of the classical information theoretic bound comes about. In this paper we refine
Quantum entanglement in the NMR implementation of the Deutsch-Jozsa algorithm
A scheme to execute an n-bit Deutsch-Jozsa (DJ) algorithm using n qubits has been implemented for up to three qubits on an NMR quantum computer. For the one- and the two-bit Deutsch problem, the
On the role of entanglement in quantum-computational speed-up
  • R. Jozsa, N. Linden
  • Mathematics, Physics
    Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  • 2003
For any quantum algorithm operating on pure states, we prove that the presence of multi‐partite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the
Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits.
We report on a fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms for 8-point functions. The measured visibility of the 8-path interferometer is about 97.5%.
Two-bit gates are universal for quantum computation.
  • DiVincenzo
  • Physics, Medicine
    Physical review. A, Atomic, molecular, and optical physics
  • 1995
A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The
Elementary gates for quantum computation.
U(2) gates are derived, which derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number of unitary operations on arbitrarily many bits.
Quantum Computation and Shor's Factoring Algorithm
Current technology is beginning to allow us to manipulate rather than just observe individual quantum phenomena. This opens up the possibility of exploiting quantum effects to perform computations
Sophisticated quantum search without entanglement
  • Meyer
  • Computer Science, Medicine
    Physical review letters
  • 2000
There is a quantum algorithm which searches a "sophisticated" database with a single query, but which it is shown does not require entanglement even for multiparticle implementations.
Quantum advantage without entanglement
The Deutsch-Jozsa algorithm is presented, and it is shown that the maximal subproblem is of greater significance, by proving that it contains all the Boolean functions whose quantum phase-oracle is non-entangling.
Quantum entanglement and quantum computational algorithms
The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We