Ontology matching by combining instance-based concept similarity measures with structure


Ontologies describe the semantics of data and provide a uniform framework of understanding between different parties. The main common reference to an ontology definition describes them as knowledge bodies, which bring a formal representation of a shared conceptualization of a domain – the objects, concepts and other entities that are assumed to exist in a certain area of interest together with the relationships holding among them. However, in open and evolving systems with decentralized nature (as, for example, the Semantic Web), it is unlikely for different parties to adopt the same ontology. The problem of ontology matching evolves from the need to align ontologies, which cover the same or similar domains of knowledge. The task is to reducing ontology heterogeneity, which can occur in different forms, not in isolation from one another. Syntactically heterogeneous ontologies are expressed in different formal languages. Terminological heterogeneity stands for variations in names when referring to the same entities and concepts. Conceptual heterogeneity refers to differences in coverage, granularity or scope when modeling the same domain of interest. Finally, prgamatic heterogeneity is about mismatches in how entities are interpreted by people in a given context. The work presented in this thesis is a contribution to the problem of reducing the terminological and conceptual heterogeneity of hierarchical ontologies (defined as ontologies, which contain a hierarchical body), populated with text documents. We make use of both intensional (structural) and extensional (instance-based) aspects of the input ontologies and combine them in order to establish correspondences between their elements. In addition, the proposed procedures yield assertions on the granularity and the extensional richness of one ontology compared to another, which is helpful at assisting a process of ontology merging. Although we put an emphasis on the application of instancebased techniques, we show that combining them with intensional approaches leads to more efficient (both conceptually and computationally) similarity judgments. The thesis is oriented towards both researchers and practitioners in the domain of ontology matching and knowledge sharing. The proposed solutions can be applied successfully to the problem of matching web-directories and facilitating the exchange of knowledge on the web-scale.

74 Figures and Tables

Cite this paper

@inproceedings{Todorov2009OntologyMB, title={Ontology matching by combining instance-based concept similarity measures with structure}, author={Konstantin Todorov}, year={2009} }