One-dimensional Dirac operators with zero-range interactions: Spectral, scattering, and topological results
@article{Pankrashkin2014OnedimensionalDO, title={One-dimensional Dirac operators with zero-range interactions: Spectral, scattering, and topological results}, author={Konstantin Pankrashkin and S. Richard}, journal={Journal of Mathematical Physics}, year={2014}, volume={55}, pages={062305} }
The spectral and scattering theory for 1-dimensional Dirac operators with mass $m$ and with zero-range interactions are fully investigated. Explicit expressions for the wave operators and for the scattering operator are provided. These new formulae take place in a representation which links, in a suitable way, the energies $-\infty$ and $+\infty$, and which emphasizes the role of $\pm m$. Finally, a topological version of Levinson's theorem is deduced, with the threshold effects at $\pm m…
24 Citations
General $\delta$-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation
- MathematicsRevista Matemática Iberoamericana
- 2022
In this work we consider the two-dimensional Dirac operator with general local singular interactions supported on a closed curve. A systematic study of the interaction is performed by decomposing it…
Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line
- PhysicsJournal of Physics A: Mathematical and Theoretical
- 2023
In this paper the two-dimensional Dirac operator with a general hermitian δ-shell interaction supported on a straight line is introduced as a self-adjoint operator and its spectral properties are…
Non-self-adjoint relativistic point interaction in one dimension
- Physics, MathematicsJournal of Mathematical Analysis and Applications
- 2022
Dirac operators with Lorentz scalar shell interactions
- MathematicsReviews in Mathematical Physics
- 2018
This paper deals with the massive three-dimensional Dirac operator coupled with a Lorentz scalar shell interaction supported on a compact smooth surface. The rigorous definition of the operator…
Two-dimensional Dirac operators with singular interactions supported on closed curves
- Mathematics
- 2020
One-Dimensional Scattering of Fermions on δ-Impurities
- PhysicsFront. Phys.
- 2019
We study the spectrum of the 1D Dirac Hamiltonian encompassing the bound and scattering states of a fermion distorted by a static background built from $\delta$-function potentials. After introducing…
Approximation of one-dimensional relativistic point interactions by regular potentials revised
- Mathematics
- 2019
We show that the one-dimensional Dirac operator with quite general point interaction may be approximated in the norm resolvent sense by the Dirac operator with a scaled regular potential of the form…
Boundary triples and Weyl functions for Dirac operators with singular interactions
- Mathematics
- 2022
In this article we develop a systematic approach to treat Dirac operators Aη,τ,λ with singular electrostatic, Lorentz scalar, and anomalous magnetic interactions of strengths η, τ, λ ∈ R,…
Singular spin-flip interactions for the 1D Schrödinger operator
- Mathematics, PhysicsPhysica Scripta
- 2019
We consider singular self-adjoint extensions of one-dimensional Schrödinger operator acting in space of two-component wave functions within the framework of the distribution theory (Kurasov 1996 J.…
On Dirac operators in R 3 with electrostatic and Lorentz scalar δ -shell interactions
- Mathematics, Physics
- 2019
In this article, Dirac operators A η,τ coupled with combinations of electrostatic and Lorentz scalar δ - shell interactions of constant strength η and τ , respectively, supported on compact surfaces…
References
SHOWING 1-10 OF 33 REFERENCES
Low-energy scattering and Levinson's theorem for a one-dimensional Dirac equation
- Mathematics
- 1989
For a Dirac system on the line, the scattering matrix is defined in terms of Lippmann-Schwinger type solutions, which are also used to express an eigenfunction expansion. The S-matrix is shown to be…
SCATTERING THEORY FOR LATTICE OPERATORS IN DIMENSION d ≥ 3
- Mathematics
- 2012
This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or…
On the structure of the wave operators in one dimensional potential scattering
- Mathematics
- 2008
In the framework of one dimensional potential scattering we prove that, modulo a compact term, the wave operators can be written in terms of a universal operator and of the scattering operator. The…
Relativistic point interaction
- Mathematics, Physics
- 1994
A four-parameter family of all self-adjoint operators corresponding to the one-dimensional Dirac Hamiltonian with point interaction is characterized in terms of boundary conditions. The spectrum and…
High-energy behavior of the scattering amplitude for a Dirac operator
- Physics, Mathematics
- 1995
We study the high-energy behavior of the scattering amplitude and the total scattering cross section for a Dirac operator with a 4 X 4 matrix-valued potential. Moreover, in the electro-magnetic case,…
Levinson theorem for Dirac particles in one dimension
- Mathematics, Physics
- 1999
Abstract:The scattering of Dirac particles by symmetric potentials in one dimension is studied. A Levinson theorem is established. By this theorem, the number of bound states with even(odd)-parity,…
On the Levinson theorem for Dirac operators
- Mathematics
- 1990
For the Dirac equation with potential V(r) obeying ∫∞0(1+r)‖V(r)‖dr<∞ we prove a relativistic version of Levinson’s theorem that relates the number of bound states in the spectral gap [−m,m] to the…
Generalized resolvents and the boundary value problems for Hermitian operators with gaps
- Mathematics
- 1991
Delta-Type Dirac Point Interactions and TheirNonrelativistic Limits
- Physics
- 2000
The problem of a relativistic free particle on a line with a hole, which ischaracterized in terms of boundary conditions for a one-dimensional DiracHamiltonian perturbed at one point, is reviewed. We…
SPECTRAL AND SCATTERING THEORY FOR THE AHARONOV–BOHM OPERATORS
- Physics, Mathematics
- 2009
We review the spectral and the scattering theory for the Aharonov–Bohm model on ℝ2. New formulae for the wave operators and for the scattering operator are presented. The asymptotics at high energy…