# On zero-divisor graphs of finite rings

@article{Akbari2007OnZG,
title={On zero-divisor graphs of finite rings},
author={Saieed Akbari and Ali Mohammadian},
journal={Journal of Algebra},
year={2007},
volume={314},
pages={168-184}
}
• Published 1 August 2007
• Mathematics
• Journal of Algebra
79 Citations

### Zero-Divisor Graphs for Group Rings

• Mathematics
• 2014
Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is

### Construction of Zero Divisor Graphs of Rings

If R is a commutative ring, Z(R) is the set of zero-divisor of R and Z(R) = Z(R) − {0}, then the zero-divisor graph of R, Γ (Z*(R)) usually written as Γ(R), is the graph in which each element of

### A Note on the Uniqueness of Zero-Divisor Graphs with Loops (Research)

• Mathematics
• 2020
It is known that rings which have isomorphic zero-divisor graphs are not necessarily isomorphic. Zero-divisor graphs for rings were originally defined without loops because edges are only defined on

### Metric and upper dimension of zero divisor graphs associated to commutative rings

• Mathematics
• 2020
Abstract Let R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices

### On the metric dimension of a zero-divisor graph

• Mathematics
• 2017
ABSTRACT Let R be a commutative ring with unity 1 and let G(V,E) be a simple graph. In this research article, we study the metric dimension in zero-divisor graphs associated with commutative rings.

### FINITE RINGS WITH EULERIAN ZERO-DIVISOR GRAPHS

The zero-divisor graph Γ(R) of an associative ring R is the graph whose vertices are all non-zero (one-sided and two-sided) zero-divisors of R, and two distinct vertices x and y are joined by an edge

### On the nilpotent graph of a ring

• Mathematics
Turkish Journal of Mathematics
• 2013
Let R be a ring with unity. The nilpotent graph of R , denoted by ΓN (R) , is a graph with vertex set ZN (R) ∗ = {0 � x ∈ R | xy ∈ N (R) for some 0 � y ∈ R} ; and two distinct vertices x and y are

### SOME RESULTS ON COZERO-DIVISOR GRAPH OF A COMMUTATIVE RING

• Mathematics
• 2014
Let R be a commutative ring with unity. The cozero-divisor graph of R denoted by Γ′(R) is a graph with the vertex set W*(R), where W*(R) is the set of all non-zero and non-unit elements of R, and two

### On zero-divisor graphs of Boolean rings

The zero-divisor graph of a ring R is the graph whose vertices consist of the nonzero zero-divisors of R in which two distinct vertices a and b are adjacent if and only if either ab = 0 or ba = 0. In

### Eulerian Zero-Divisor Graphs

• Mathematics
Ars Comb.
• 2013
AbstractIn this article, we characterize for which nite commutative ringR, the zero-divisor graph ( R), the line graph L(( R)), the com-plement graph ( R), and the line graph for the complement