Corpus ID: 119671928

On virtual link invariants

@article{Schrijver2012OnVL,
  title={On virtual link invariants},
  author={A. Schrijver},
  journal={arXiv: Quantum Algebra},
  year={2012}
}
  • A. Schrijver
  • Published 2012
  • Mathematics
  • arXiv: Quantum Algebra
  • Virtual links were introduced by Kauffman in 1999. We characterize the virtual link invariants that are partition functions of vertex models (as considered by de la Harpe and Jones), both in the real and in the complex case. We show that for any fixed number of states, these invariants form an affine variety. Basic techniques are the first and second fundamental theorem of invariant theory for the orthogonal group (in the sense of Weyl) and some related methods from algebraic geometry. 
    2 Citations
    On the existence of real R-matrices for virtual link invariants
    • 4
    • PDF
    Tensors masquerading as matchgates: Relaxing planarity restrictions on Pfaffian circuits
    • J. Turner
    • Mathematics, Computer Science
    • J. Comput. Syst. Sci.
    • 2017
    • 1
    • PDF

    References

    SHOWING 1-10 OF 15 REFERENCES
    Graph Invariants Related to Statistical Mechanical Models: Examples and Problems
    • 55
    • Highly Influential
    The classical groups : their invariants and representations
    • 1,725
    • PDF
    Graph invariants in the spin model
    • A. Schrijver
    • Mathematics, Computer Science
    • J. Comb. Theory, Ser. B
    • 2009
    • 29
    • PDF
    Tensor subalgebras and First Fundamental Theorems in invariant theory
    • 11
    • PDF
    Knots and Physics
    • 72
    • PDF
    Introduction to actions of algebraic groups
    • 57
    • PDF
    INTRODUCTION TO VIRTUAL KNOT THEORY
    • 66
    • PDF
    The Yang-Baxter equation and invariants of links
    • 503
    Virtual Knot Theory
    • L. Kauffman
    • Mathematics, Computer Science
    • Eur. J. Comb.
    • 1999
    • 832
    • PDF