On variational approach to the Hamilton-Jacobi PDE

  title={On variational approach to the Hamilton-Jacobi PDE},
  author={J. Chabrowski and Kewei Zhang},
In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation (∗) there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations. 

From This Paper

Figures, tables, results, connections, and topics extracted from this paper.
0 Extracted Citations
11 Extracted References
Similar Papers

Referenced Papers

Publications referenced by this paper.
Showing 1-10 of 11 references

Existence and uniqueness in photometric stereo

  • R. Kozera
  • Applied Mathematics and Computation
  • 1991

Existence and uniqueness in photometric stereo, Applied Mathematics and Computation

  • R. Kozera
  • 1991

Applied Mathematical Sciences 78

  • B. Dacorogna, Direct methods in the calculus of variations
  • Springer Verlag, Berlin - Heidelberg,
  • 1989

A version of the fundamental theorem for Young measures

  • J. M. Ball
  • Lecture Notes in Physics, Springer Verlag
  • 1988

Optimal design and relaxation of variational problems, I, Comm

  • R. V. KG Kohn, G. Strang
  • Pure and Applied Math
  • 1986

Some remarks on the shape-from-shading problem in computer vision

  • P. DS Deift, J. Sylvester
  • J. Math. Anal. Appl
  • 1982

The eikonal equation : some results applicable to computer vision

  • Anna R. Bruss
  • J . Math . Phys .
  • 1982

Academic Press

  • Adams R.A., Sobolev spaces
  • New York,
  • 1975


  • I. Ekeland, R. Temam, variationnels Analyse convexe et problèmes
  • Paris,
  • 1974
1 Excerpt

Intégrandes normales et mesures parametrées en calcul des variations

  • H. BL Berliochi, J. M. Lasry
  • Bull. Soc. Math. France
  • 1973

Similar Papers

Loading similar papers…