On using content addressable memory for packet classistcation

Abstract

Packet switched networks such as the Internet require packet classification at every hop in order to apply services and security policies to traffic flows. The relentless increase in link speeds and traffic volume imposes astringent constraints on packet classification solutions. Ternary Content Addressable Memory (TCAM) devices are favored by most network component and equipment vendors due to the fast and deterministic lookup performance afforded by their use of massive parallelism. While able to keep up with high speed links, TCAMs suffer from exorbitant power consumption, poor scalability to longer search keys and larger filter sets, and inefficient support of multiple matches. The research community has responded with algorithms that seek to meet the lookup rate constraint with greater efficiency through the use of commodity Random Access Memory (RAM) technology. The most promising algorithms efficiently achieve high lookup rates by leveraging the statistical structure of real filter sets. Due to their dependence on filter set characteristics, it is difficult to provision processing and memory resources for implementations that support a wide variety of filter sets. We show how several algorithmic advances may be leveraged to improve the efficiency, scalability, incremental update and multiple match performance of CAM-based packet classification techniques without degrading the lookup performance. Our approach, Label Encoded Content Addressable Memory (LECAM), represents a hybrid technique that utilizes decomposition, label encoding, and a novel Content Addressable Memory (CAM) architecture. By reducing the number of implementation parameters, LECAM provides a vehicle to carry several of the recent algorithmic advances into practice. We provide a thorough overview of CAM technologies and packet classification algorithms, along with a detailed discussion of the scaling issues that arise with longer search keys and larger filter sets. We also provide a comparative analysis of LECAM and standard TCAM using a collection of real and synthetic filter sets of various sizes and compositions.

12 Figures and Tables

Cite this paper

@inproceedings{Taylor2016OnUC, title={On using content addressable memory for packet classistcation}, author={David E. Taylor and Edward W. Spitznagel}, year={2016} }