On two conjectures of Hartshorne's

  title={On two conjectures of Hartshorne's},
  author={Daniel Barlet and Thomas Peternell and Michael Schneider},
  journal={Mathematische Annalen},
5 Citations
Contact Kähler Manifolds: Symmetries and Deformations
We study complex compact Kahler manifolds X carrying a contact structure. If X is almost homogeneous and b 2(X) ≥ 2, then X is a projectivised tangent bundle (this was known in the projective caseExpand
Submanifolds with ample normal bundles and a conjecture of Hartshorne
The Hartshorne conjecture predicts that two submanifolds X and Y in a projective manifold Z with ample normal bundles meets as soon as dim X + dim Y is at least dim Z. We mostly assume slightlyExpand
On the ample vector bundles over curves in positive characteristic
Abstract Let E be an ample vector bundle over a smooth projective curve defined over an algebraically closed field of positive characteristic. We construct a family of curves in the total space of EExpand
How to Use Cycle Space in Complex Geometry
In complex geometry, the use of n-convexity and the use of ampleness of the normal bundle of a d-codimensional submanifold are quite difficult for n > 0 and d > 1. The aim of this paper is to explainExpand


Ample subvarieties of algebraic varieties
Ample divisors.- Affine open subsets.- Generalization to higher codimensions.- The grothendieck-lefschetz theorems.- Formal-rational functions along a subvariety.- Algebraic geometry and analyticExpand
Positivity and Excess Intersection
Consider a variety M, and a projective local complete intersection $${\text{X }}\underline \subset {\text{ M}}$$ of pure codimension e. Then for any subvariety \({\text{Y }}\underline \subsetExpand
Beweis einer Vermutung von Hartshorne für den Fall homogener Mannigfaltigkeiten.
Satz 3. 2. Es sei X eine n-dimensionale zusammenhängende homogene kompakte komplexe Mannigfaltigkeit, Y1 c X eine abgeschlossene komplexe Untermannigfaltigkeit mit dim Y1 > 0 und Y2<^X eineExpand
Théorèmes de finitude pour la cohomologie des espaces complexes
© Association des collaborateurs de Nicolas Bourbaki, 1962, tous droits réservés. L’accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l’accord avec les conditionsExpand