# On the tritronquée solutions of P$_I^2$

@article{Kapaev2013OnTT, title={On the tritronqu{\'e}e solutions of P\$\_I^2\$}, author={Andrei A. Kapaev and Christian Klein and Tamara Grava}, journal={arXiv: Mathematical Physics}, year={2013} }

For equation P$_I^2$, the second member in the P$_I$ hierarchy, we prove existence of various degenerate solutions depending on the complex parameter $t$ and evaluate the asymptotics in the complex $x$ plane for $|x|\to\infty$ and $t=o(x^{2/3})$. Using this result, we identify the most degenerate solutions $u^{(m)}(x,t)$, $\hat u^{(m)}(x,t)$, $m=0,...,6$, called {\em tritronqu\'ee}, describe the quasi-linear Stokes phenomenon and find the large $n$ asymptotics of the coefficients in a formal…

## 7 Citations

### On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations

- MathematicsJ. Nonlinear Sci.
- 2015

It is argued that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P$$_I$$I) equation or its fourth-order analogue P$$-I^2$$I2.

### Integrable Abel equation and asymptotics of symmetry solutions of Korteweg-de Vries equation

- MathematicsUfimskii Matematicheskii Zhurnal
- 2021

. We provide a general solution to a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of…

### Truncated Solutions of Painlevé Equation PV

- MathematicsSymmetry, Integrability and Geometry: Methods and Applications
- 2018

We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlev\'e equation with nonzero parameters, valid in half…

### Tronquée Solutions of the Third and Fourth Painlevé Equations

- MathematicsSymmetry, Integrability and Geometry: Methods and Applications
- 2018

Recently in a paper by Lin, Dai and Tibboel, it was shown that the third and fourth Painleve equations have tronquee and tritronquee solutions. We obtain global information about these tronquee and…

### Spectral approach to Korteweg-de Vries equations on the compactiﬁed real line. (English)

- Mathematics
- 2022

Summary: We present a numerical approach for generalised Korteweg-de Vries (KdV) equations on the real line. In the spatial dimension we compactify the real line and apply a Chebyshev collocation…

### Numerical Approach to Painlevé Transcendents on Unbounded Domains

- MathematicsSymmetry, Integrability and Geometry: Methods and Applications
- 2018

A multidomain spectral approach for Painlev\'e transcendents on unbounded domains is presented. This method is designed to study solutions determined uniquely by a, possibly divergent, asymptotic…

### Spectral approach to Korteweg-de Vries equations on the compactified real line

- MathematicsApplied Numerical Mathematics
- 2022

## References

SHOWING 1-10 OF 45 REFERENCES

### Asymptotics of the instantons of Painleve I

- Mathematics
- 2010

The 0-instanton solution of Painlev\'e I is a sequence $(u_{n,0})$ of complex numbers which appears universally in many enumerative problems in algebraic geometry, graph theory, matrix models and…

### Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach

- Mathematics
- 2008

AbstractWe obtain an asymptotic expansion for the solution of the Cauchy problem for the Korteweg-de Vries (KdV) equation
$$u_t+6uu_x+\epsilon^{2}u_{xxx}=0,\quad u(x,t=0,\epsilon)=u_0(x),$$for…

### Weakly nonlinear solutions of equationP12

- Mathematics
- 1995

AbstractUsing the isomonodromic deformation method, we study the equation P12,
$$\frac{1}{{10}}y^{(4)} + y''y + \frac{1}{2}(y')^2 + y^3 = x$$
, which is the first higher equation in the hierarchy of…

### On Universality of Critical Behavior in the Focusing Nonlinear Schrödinger Equation, Elliptic Umbilic Catastrophe and the Tritronquée Solution to the Painlevé-I Equation

- MathematicsJ. Nonlinear Sci.
- 2009

It is argued that the critical behavior near the point of “gradient catastrophe” of the solution of the Cauchy problem for the focusing nonlinear Schrödinger equation is approximately described by a particular solution to the Painlevé-I equation.

### Квантования высших гамильтоновых аналогов уравнений Пенлеве I и II с двумя степенями свободы@@@“Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom

- Mathematics
- 2014

We construct a solution of an analog of the Schr\"{o}dinger equation for the Hamiltonian $ H_I (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painleve I hierarchy.…

### The KdV hierarchy: universality and a Painlevé transcendent

- Mathematics
- 2011

We study the Cauchy problem for the Korteweg-de Vries (KdV) hierarchy in the small dispersion limit where $\e\to 0$. For negative analytic initial data with a single negative hump, we prove that for…

### The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painlevé II Equation

- Physics
- 2014

Resurgent transseries have recently been shown to be a very powerful construction for completely describing nonperturbative phenomena in both matrix models and topological or minimal strings. These…

### Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models

- Mathematics
- 2007

We consider unitary random matrix ensembles $$Z_{n,s,t}^{-1}e^{-n tr V_{s,t}(M)}dM$$ on the space of Hermitian n × n matrices M, where the confining potential Vs,t is such that the limiting mean…

### “Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom

- Mathematics
- 2014

We construct a solution of an analogue of the Schrödinger equation for the Hamiltonian H1(z, t, q1, q2, p1, p2) corresponding to the second equation P12 in the Painlevé I hierarchy. This solution is…