On the stability of nonlinear Feynman-Kac semigroups
@article{Moral2002OnTS, title={On the stability of nonlinear Feynman-Kac semigroups}, author={Pierre Del Moral and Laurent Miclo}, journal={Annales de la Facult{\'e} des Sciences de Toulouse}, year={2002}, volume={11}, pages={135-175} }
On s'interesse aux proprietes de stabilite de certains semi-groupes non-lineaires, de type Feynman-Kac renormalises, agissant sur l'ensemble des probabilites d'un espace mesure donne. Cette etude se base notamment sur l'utilisation du coefficient ergodique de Dobrushin dans l'esprit d'articles precedents de A. Guionnet et de l'un des auteurs. La seconde partie de ce travail porte sur des applications des resultats obtenus. Tout d'abord nous donnons des criteres assurant qu'une particule sous…
33 Citations
Dynamiques recuites de type Feynman-Kac : résultats précis et conjectures
- Mathematics
- 2006
Soit U une fonction definie sur un ensemble fini E muni d'un noyau markovien irreductible M . L'objectif du papier est de comparer theoriquement deux procedures stochastiques de minimisation globale…
Processus de Fleming-Viot, distributions quasi-stationnaires et marches aléatoires en interaction de type champ moyen
- Physics
- 2015
Dans cette these nous etudions le comportement asymptotique de systemes de particules en interaction de type champ moyen en espace discret, systemes pour lesquels l'interaction a lieu par…
More on the long time stability of Feynman–Kac semigroups
- MathematicsStochastics and Partial Differential Equations: Analysis and Computations
- 2020
Feynman–Kac semigroups appear in various areas of mathematics: non-linear filtering, large deviations theory, spectral analysis of Schrödinger operators among others. Their long time behavior…
DYNAMIQUES RECUITES DE TYPE FEYNMAN-KAC : R´ ESULTATS PR´
- Mathematics
- 2006
Let U be a function defined on a finite set E which is endowed with an irreducible Markov kernel M. The main purpose of this paper is to theoretically compare two stochastic procedures for the global…
ON THE STABILITY OF POSITIVE SEMIGROUPS BY PIERRE
- Mathematics
- 2022
The stability and contraction properties of positive integral semigroups on Polish spaces are investigated. Our novel analysis is based on the extension of V -norm contraction methods, associated to…
Quantum harmonic oscillators and Feynman-Kac path integrals for linear diffusive particles
- Mathematics
- 2021
We propose a new solvable class of multidimensional quantum harmonic oscillators for a linear diffusive particle and a quadratic energy absorbing well associated with a semi-definite positive matrix…
On the Stability of Positive Semigroups
- Mathematics
- 2021
The stability and contraction properties of positive integral semigroups on Polish spaces are investigated. Our novel analysis is based on the extension of V -norm contraction methods, associated to…
A non‐conservative Harris ergodic theorem
- MathematicsJournal of the London Mathematical Society
- 2022
We consider non‐conservative positive semigroups and obtain necessary and sufficient conditions for uniform exponential contraction in weighted total variation norm. This ensures the existence of…
Exponential quasi-ergodicity for processes with discontinuous trajectories
- Mathematics
- 2019
Some new results provide opportunities to ensure the exponential convergence to a unique quasistationary distribution in the total variation norm, for quite general strong Markov processes.…
Feynman-Kac Particle Integration with Geometric Interacting Jumps
- Mathematics
- 2012
This article is concerned with the design and analysis of discrete time Feynman-Kac particle integration models with geometric interacting jump processes. We analyze two general types of model,…
References
SHOWING 1-10 OF 15 REFERENCES
On the stability of interacting processes with applications to filtering and genetic algorithms
- Mathematics
- 2001
Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering
- Mathematics
- 2000
This paper focuses on interacting particle systems methods for solving numerically a class of Feynman-Kac formulae arising in the study of certain parabolic differential equations, physics, biology,…
Entropic convergence for solutions of the Boltzmann equation with general physical initial data
- Mathematics, Physics
- 1997
Abstract We show, for a particular collision kernel, that the entropy tends to its equilibrium limit for all solutions of the spatially homogeneous Boltzmann equation with finite energy, finite…
A Robust Discrete State Approximation to the Optimal Nonlinear Filter for a Diffusion.
- Mathematics, Computer Science
- 1980
The approximation is robust in the sense that it is locally Lipschitz continuous in the data y( °) (sup norm) uniformly in h and it converges to the optimal filter for the diffusion.
Heat kernels and spectral theory
- Mathematics
- 1989
Preface 1. Introductory concepts 2. Logarithmic Sobolev inequalities 3. Gaussian bounds on heat kernels 4. Boundary behaviour 5. Riemannian manifolds References Notation index Index.
Central Limit Theorem for Nonstationary Markov Chains. II
- Mathematics
- 1956
The second part of this paper contains proofs of results published in the first part (see the first number of this journal).
P.) & MICLO (L.)
- 2000
Propagation of Smoothness and the Rate of Exponential Convergence to Equilibrium for a Spatially Homogeneous Maxwellian Gas
- Mathematics
- 1999
Abstract:We prove an inequality for the gain term in the Boltzmann equation for Maxwellian molecules that implies a uniform bound on Sobolev norms of the solution, provided the initial data has a…
Stochastic partial differential equations that arise in nonlinear filtering problem
- 1972
Characterization and Convergence, Wiley series in probability and mathematical statistics
- Markov Processes
- 1986