On the size of the algebraic difference of two random Cantor sets

@article{Dekking2008OnTS,
  title={On the size of the algebraic difference of two random Cantor sets},
  author={Michel Dekking and K{\'a}roly Simon},
  journal={Random Struct. Algorithms},
  year={2008},
  volume={32},
  pages={205-222}
}
In this paper we consider some families of random Cantor sets on the line and investigate the question whether the condition that the sum of Hausdorff dimension is larger than one implies the existence of interior points in the difference set of two independent copies. We prove that this is the case for the so called Mandelbrot percolation. On the other hand the same is not always true if we apply a slightly more general construction of random Cantor sets. We also present a complete solution… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 12 references

On the geometry of random Cantor sets and fractal percolation

  • K. J. Falconer, G. R. Grimmett
  • J. Theoret. Probab. Vol
  • 1992
Highly Influential
8 Excerpts

Homoclinic orbits, hyperbolic dynamics and dimension of Cantor sets, The Lefschetz centennial conference, Part III (Mexico City,1984)

  • J. Palis
  • Contemp. Math.,
  • 1987
Highly Influential
9 Excerpts

Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire: quelques extensions

  • B. B. Mandelbrot
  • C. R. Acad. Sci. Paris Sér. A,
  • 1974
Highly Influential
7 Excerpts

Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann

  • C.G.T. de A. Moreira, Yoccoz, J.-C
  • Annals of Mathematics. Second Series,
  • 2001
2 Excerpts

Correction: On the geometry of random Cantor sets and fractal percolation

  • K. J. Falconer, G. R. Grimmett
  • J. Theoret. Probab
  • 1994
2 Excerpts

The difference set of two random Cantor sets

  • P. Larsson
  • Doctoral thesis in Mathematics, Uppsala…
  • 1991
1 Excerpt

L’ensemble différence de deux ensembles de Cantor aléatoires

  • P. Larsson
  • C. R. Acad. Sci. Paris Sr. I Math
  • 1990
1 Excerpt

Projections of random Cantor sets

  • K. J. Falconer
  • J. Theoret. Probab., no
  • 1989

Superbranching processes and projections of random Cantor sets

  • G. R. Grimmett
  • Probab Theory Related Fields
  • 1988

Similar Papers

Loading similar papers…