# On the rigidity of lagrangian products

@article{Ramos2019OnTR, title={On the rigidity of lagrangian products}, author={Vinicius G. B. Ramos and Daniele Sepe}, journal={Journal of Symplectic Geometry}, year={2019} }

Motivated by work of the first author, this paper studies symplectic embedding problems of lagrangian products that are sufficiently symmetric. In general, lagrangian products arise naturally in the study of billiards. The main result of the paper is the rigidity of a large class of symplectic embedding problems of lagrangian products in any dimension. This is achieved by showing that the lagrangian products under consideration are symplectomorphic to toric domains, and by using the Gromov…

## Figures from this paper

## 4 Citations

Symplectic embeddings into disk cotangent bundles

- Mathematics
- 2021

In this paper, we compute the embedded contact homology (ECH) capacities of the disk cotangent bundles D∗S2 and D∗RP 2. We also find sharp symplectic embeddings into these domains. In particular, we…

Symplectic embeddings of the $\ell_p$-sum of two discs

- Mathematics
- 2019

In this paper we study symplectic embedding questions for the $\ell_p$-sum of two discs in ${\mathbb R}^4$, when $1 \leq p \leq \infty$. In particular, we compute the symplectic inner and outer radii…

Towards the strong Viterbo conjecture

- Mathematics
- 2020

This paper is a step towards the strong Viterbo conjecture on the coincidence of all symplectic capacities on convex domains. Our main result is a proof of this conjecture in dimension 4 for the…

The Viterbo's capacity conjectures for convex toric domains and the product of a $1$-unconditional convex body and its polar

- Mathematics
- 2020

In this note, we show that the strong Viterbo conjecture holds true on any convex toric domain, and that the Viterbo's volume-capacity conjecture holds for the product of a $1$-unconditional convex…

## References

SHOWING 1-10 OF 32 REFERENCES

Symplectic embeddings and the lagrangian bidisk

- Mathematics
- 2017

In this paper we obtain sharp obstructions to the symplectic embedding of the lagrangian bidisk into four-dimensional balls, ellipsoids and symplectic polydisks. We prove, in fact, that the interior…

Symplectic embeddings of ellipsoids

- Mathematics
- 2003

We study the rigidity and flexibility of symplectic embeddings in the model case in which the domain is a symplectic ellipsoid. It is first proved that under the conditionrn2≤2r12 the symplectic…

Asymptotically Holomorphic Families of Symplectic Submanifolds

- Mathematics
- 1997

Abstract. We construct a wide range of symplectic submanifolds in a compact symplectic manifold as the zero sets of asymptotically holomorphic sections of vector bundles obtained by tensoring an…

The Gromov width of 4-dimensional tori

- Mathematics
- 2013

We show that every 4-dimensional torus with a linear symplectic form can be fully filled by one symplectic ball. If such a torus is not symplectomorphic to a product of 2-dimensional tori with equal…

Recent progress on symplectic embedding problems in four dimensions

- MathematicsProceedings of the National Academy of Sciences
- 2011

Numerical invariants defined using embedded contact homology give general obstructions to symplectic embeddings in four dimensions which turn out to be sharp in the above cases.

New obstructions to symplectic embeddings

- Mathematics
- 2014

In this paper we establish new restrictions on the symplectic embeddings of basic shapes in symplectic vector spaces. By refining an embedding technique due to Guth, we also show that they are sharp.

Symplectic embeddings of products

- Mathematics
- 2015

McDuff and Schlenk determined when a four-dimensional ellipsoid can be symplectically embedded into a four-dimensional ball, and found that when the ellipsoid is close to round, the answer is given…

When symplectic topology meets Banach space geometry

- Mathematics
- 2014

In this paper we survey some recent works that take the first steps toward establishing bilateral connections between symplectic geometry and several other fields, namely, asymptotic geometric…

Quantitative symplectic geometry

- Mathematics
- 2005

While symplectic manifolds have no local invariants, they do admit many global numerical invariants. Prominent among them are the so-called symplectic capacities. Different capacities are defined in…

Symplectic capacities from positive
S1–equivariant symplectic homology

- MathematicsAlgebraic & Geometric Topology
- 2018

We use positive S^1-equivariant symplectic homology to define a sequence of symplectic capacities c_k for star-shaped domains in R^{2n}. These capacities are conjecturally equal to the Ekeland-Hofer…