On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling
@article{Monneau2004OnTR, title={On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling}, author={R{\'e}gis Monneau}, journal={Annales de la Facult{\'e} des Sciences de Toulouse}, year={2004}, volume={13}, pages={289-311} }
Nous etudions les frontieres libres asociees a des solutions d'une classe de problemes de l'obstacle non lineaires. Cette classe de problemes contient un modele particulier derive des equations de Ginzburg-Landau de la supraconductivite. Nous considerons des solutions dans un ouvert borne Ω a bord Lipschitz, et nous prouvons que la frontiere libre est reguliere lorsque celle-ci est suffisamment proche du bord fixe ∂Ω. Nous prouvons aussi un resultat de stabilite de la frontiere libre et donnons…
Figures from this paper
2 Citations
On the Regularity of the Free Boundary for Quasilinear Obstacle Problems
- Mathematics
- 2012
We extend basic regularity of the free boundary of the obstacle problem to some classes of heterogeneous quasilinear elliptic operators with variable growth that includes, in particular, the…
Obstacle type problems in Orlicz-Sobolev spaces
- Mathematics
- 2013
Tese de doutoramento, Matematica (Fisica Matematica e Mecânica dos Meios Continuos), Universidade de Lisboa, Faculdade de Ciencias, 2013
References
SHOWING 1-10 OF 53 REFERENCES
Regularity in free boundary problems
- Mathematics
- 1977
L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions…
A rigorous derivation of a free-boundary problem arising in superconductivity
- Physics, Mathematics
- 2000
Free-Boundary Regularity for a Problem Arising in Superconductivity
- Mathematics
- 2004
Abstract.This paper concerns regularity properties of the mean-field theory of superconductivity. The problem is reminiscent of the one studied earlier by L.A. Caffarelli, L. Karp and H. Shahgholian…
A free boundary problem for semilinear elliptic equations.
- Mathematics
- 1986
Etude de la nature de la frontiere libre Ω∩∂{u>0} pour un probleme de Dirichlet semilineaire
Distribution of vortices in a type-II superconductor as a free boundary problem: existence and regularity via Nash-Moser theory
- Mathematics
- 2000
This paper is concerned with a model describing the distribution of vortices in a Type-II superconductor. These vortices are distributed continuously and occupy an unknown region D with ∂ D…
Stable Configurations in Superconductivity: Uniqueness, Multiplicity, and Vortex‐Nucleation
- Mathematics
- 1999
Abstract. We find new stable solutions of the Ginzburg‐Landau equation for high κ superconductors with exterior magnetic field hex. First, we prove the uniqueness of the Meissner‐type solution. Then,…
A mean-field model of superconducting vortices
- Physics, MathematicsEuropean Journal of Applied Mathematics
- 1996
A mean-field model for the motion of rectilinear vortices in the mixed state of a type-II superconductor is formulated. Steady-state solutions for some simple geometries are examined, and a local…
ON THE ENERGY OF TYPE-II SUPERCONDUCTORS IN THE MIXED PHASE
- Physics
- 2000
We study the Ginzburg–Landau energy of superconductors with high κ, put in a prescribed external field hex, for hex varying between the two critical fields Hc1 and Hc3. As κ → +∞, we give the leading…
On the method of moving planes and the sliding method
- Mathematics
- 1991
The method of moving planes and the sliding method are used in proving monotonicity or symmetry in, say, thex1 direction for solutions of nonlinear elliptic equationsF(x, u, Du, D2u)=0 in a bounded…