On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling

  title={On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling},
  author={R{\'e}gis Monneau},
  journal={Annales de la Facult{\'e} des Sciences de Toulouse},
  • R. Monneau
  • Published 2004
  • Mathematics
  • Annales de la Faculté des Sciences de Toulouse
Nous etudions les frontieres libres asociees a des solutions d'une classe de problemes de l'obstacle non lineaires. Cette classe de problemes contient un modele particulier derive des equations de Ginzburg-Landau de la supraconductivite. Nous considerons des solutions dans un ouvert borne Ω a bord Lipschitz, et nous prouvons que la frontiere libre est reguliere lorsque celle-ci est suffisamment proche du bord fixe ∂Ω. Nous prouvons aussi un resultat de stabilite de la frontiere libre et donnons… 

Figures from this paper

On the Regularity of the Free Boundary for Quasilinear Obstacle Problems
We extend basic regularity of the free boundary of the obstacle problem to some classes of heterogeneous quasilinear elliptic operators with variable growth that includes, in particular, the
Obstacle type problems in Orlicz-Sobolev spaces
Tese de doutoramento, Matematica (Fisica Matematica e Mecânica dos Meios Continuos), Universidade de Lisboa, Faculdade de Ciencias, 2013


Regularity in free boundary problems
L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions
A rigorous derivation of a free-boundary problem arising in superconductivity
Free-Boundary Regularity for a Problem Arising in Superconductivity
Abstract.This paper concerns regularity properties of the mean-field theory of superconductivity. The problem is reminiscent of the one studied earlier by L.A. Caffarelli, L. Karp and H. Shahgholian
A free boundary problem for semilinear elliptic equations.
Etude de la nature de la frontiere libre Ω∩∂{u>0} pour un probleme de Dirichlet semilineaire
Distribution of vortices in a type-II superconductor as a free boundary problem: existence and regularity via Nash-Moser theory
This paper is concerned with a model describing the distribution of vortices in a Type-II superconductor. These vortices are distributed continuously and occupy an unknown region D with ∂ D
Stable Configurations in Superconductivity: Uniqueness, Multiplicity, and Vortex‐Nucleation
Abstract. We find new stable solutions of the Ginzburg‐Landau equation for high κ superconductors with exterior magnetic field hex. First, we prove the uniqueness of the Meissner‐type solution. Then,
A mean-field model of superconducting vortices
A mean-field model for the motion of rectilinear vortices in the mixed state of a type-II superconductor is formulated. Steady-state solutions for some simple geometries are examined, and a local
We study the Ginzburg–Landau energy of superconductors with high κ, put in a prescribed external field hex, for hex varying between the two critical fields Hc1 and Hc3. As κ → +∞, we give the leading
Obstacle Problems in Mathematical Physics
On the method of moving planes and the sliding method
The method of moving planes and the sliding method are used in proving monotonicity or symmetry in, say, thex1 direction for solutions of nonlinear elliptic equationsF(x, u, Du, D2u)=0 in a bounded