## Error estimates for spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace – Beltrami operator

- Nicolás Garćıa Trillos, Moritz Gerlach, Matthias Hein, Dejan Slepcev
- 2018

Highly Influenced

@inproceedings{Trillos2015OnTR, title={On the rate of convergence of empirical measures in ∞-transportation distance}, author={Nicol{\'a}s Garc{\'i}a Trillos}, year={2015} }

- Published 2015

We consider random i.i.d. samples of absolutely continuous measures on bounded connected domains. We prove an upper bound on the ∞-transportation distance between the measure and the empirical measure of the sample. The bound is optimal in terms of scaling with the number of sample points.

1 Citations

14 References

Similar Papers

Highly Influenced