On the peel number and the leaf-height of Galton–Watson trees

@article{Devroye2022OnTP,
title={On the peel number and the leaf-height of Galton–Watson trees},
author={Luc Devroye and Marcel K. Goh and Rosie Y. Zhao},
journal={Combinatorics, Probability and Computing},
year={2022}
}
• Published 28 June 2021
• Mathematics
• Combinatorics, Probability and Computing
<jats:p>We study several parameters of a random Bienaymé–Galton–Watson tree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548322000128_inline1.png" /> <jats:tex-math> $T_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png…

References

SHOWING 1-10 OF 31 REFERENCES

Analysis of three graph parameters for random trees

• Computer Science, Mathematics
Random Struct. Algorithms
• 2009
It is shown that for simply generated tree families that the mean and the variance of each of the three parameters under consideration behave for a randomly chosen tree of size n asymptotically ∼μn and ∼νn, where the constants μ and ν depend on the tree family and the parameter studied.

The total progeny in a branching process and a related random walk

This paper is a continuation of [1]. The techniques of [1] are used to get specific information about the distribution of the total progeny in a branching process. This distribution is also related

An Estimate for Concentration Functions

Let $\xi _1 , \cdots ,\xi _n$ be independent random variables, $Q_k \{ l \} = \mathop {\sup }\limits_x {\bf P} \{ {x \leqq \xi _k \leqq x + l} \},$\[ Q \{ L \} = \mathop {\sup }\limits_x {\bf P}

Protection numbers in simply generated trees and Pólya trees

• Mathematics
Applicable Analysis and Discrete Mathematics
• 2021
We determine the limit of the expected value and the variance of the protection number of the root in simply generated trees, in P?lya trees, and in unlabelled non-plane binary trees, when the

Subdiffusive behavior of random walk on a random cluster

On considere deux cas de marche aleatoire {X n } n≥0 sur un graphe aleatoire #7B-G. Dans le cas ou #7B-G est l'arbre d'un processus de branchement critique, conditionne par la non-extinction, si h(x)

Recursive functions on conditional Galton‐Watson trees

• Mathematics
Random Struct. Algorithms
• 2020
The limit behavior when the leaf values are drawn independently from a fixed distribution on $S$ is described, and the tree $T_n$ is a random Galton--Watson tree of size n.