On the peel number and the leaf-height of Galton–Watson trees
@article{Devroye2021OnTP, title={On the peel number and the leaf-height of Galton–Watson trees}, author={Luc Devroye and Marcel K. Goh and Rosie Y. Zhao}, journal={Combinatorics, Probability and Computing}, year={2021} }
<jats:p>We study several parameters of a random Bienaymé–Galton–Watson tree <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548322000128_inline1.png" />
<jats:tex-math>
$T_n$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> of size <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png…
References
SHOWING 1-10 OF 31 REFERENCES
Analysis of three graph parameters for random trees
- Computer Science, MathematicsRandom Struct. Algorithms
- 2009
It is shown that for simply generated tree families that the mean and the variance of each of the three parameters under consideration behave for a randomly chosen tree of size n asymptotically ∼μn and ∼νn, where the constants μ and ν depend on the tree family and the parameter studied.
A note on the independence number, domination number and related parameters of random binary search trees and random recursive trees
- Mathematics, Computer ScienceDiscret. Appl. Math.
- 2021
The total progeny in a branching process and a related random walk
- Mathematics
- 1969
This paper is a continuation of [1]. The techniques of [1] are used to get specific information about the distribution of the total progeny in a branching process. This distribution is also related…
On an Estimate of the Concentration Function of a Sum of Independent Random Variables
- Mathematics
- 1970
An Estimate for Concentration Functions
- Mathematics
- 1961
Let $\xi _1 , \cdots ,\xi _n $ be independent random variables, \[ Q_k \{ l \} = \mathop {\sup }\limits_x {\bf P} \{ {x \leqq \xi _k \leqq x + l} \}, \]\[ Q \{ L \} = \mathop {\sup }\limits_x {\bf P}…
Protection numbers in simply generated trees and Pólya trees
- MathematicsApplicable Analysis and Discrete Mathematics
- 2021
We determine the limit of the expected value and the variance of the
protection number of the root in simply generated trees, in P?lya trees, and
in unlabelled non-plane binary trees, when the…
Subdiffusive behavior of random walk on a random cluster
- Mathematics
- 1986
On considere deux cas de marche aleatoire {X n } n≥0 sur un graphe aleatoire #7B-G. Dans le cas ou #7B-G est l'arbre d'un processus de branchement critique, conditionne par la non-extinction, si h(x)…
Recursive functions on conditional Galton‐Watson trees
- MathematicsRandom Struct. Algorithms
- 2020
The limit behavior when the leaf values are drawn independently from a fixed distribution on $S$ is described, and the tree $T_n$ is a random Galton--Watson tree of size n.