# On the orthogonal democratic systems in the $L^p$ spaces

@article{Kazarian2018OnTO, title={On the orthogonal democratic systems in the \$L^p\$ spaces}, author={K. Kazarian and A. S. Antol{\'i}n}, journal={arXiv: Functional Analysis}, year={2018} }

The concept of bidemocratic pair for a Banach space was introduced in \cite{KS:18}. We construct a family of orthonormal systems $\mathfrak{F}_{l},$ $l\in (0,\infty)$ of functions defined on $[-1,1]$ such that the pair $(\mathfrak{F}_{l},\mathfrak{F}_{l})$ is bidemocratic for $L^{p}[-1,1]$ and for $L^{p'}[-1,1]$ if $l\in (0, \frac{p}{2(p-2)}]$, where $p>2$ and $p'= \frac{p}{p-1}$. The system $\mathfrak{F}_{l}$ is not democratic for $L^{p'}[-1,1]$ when $l\in (\frac{p}{2(p-2)}, \frac{p}{p-2… Expand

#### References

SHOWING 1-10 OF 12 REFERENCES

Denka Kutzarova

- and V. N. Temlyakov, The thresholding greedy algorithm, greedy bases, and duality, Constr. Approx. 19
- 2003

A

- San Antoĺın; Wavelets and bidemocratic pairs in weighted norm spaces, Math. Notes, 104,4, 41-50
- 2018

S

- S. Kazaryan and A. San Antoĺın, “Wavelets in weighted norm spaces,” Tohoku Mathematical Journal, 70, 4,567-605
- 2018

A remark on greedy approximation in Banach spaces

- East. J. Approx. 5, 365–379
- 1999