On the mean field equation with variable intensities on pierced domains

@inproceedings{Esposito2019OnTM,
  title={On the mean field equation with variable intensities on pierced domains},
  author={Pierpaolo Esposito and Pablo Figueroa and Angela Pistoia},
  year={2019}
}
We consider the two-dimensional mean field equation of the equilibrium turbulence with variable intensities and Dirichlet boundary condition on a pierced domain $$\left\{ \begin{array}{ll} -\Delta u=\lambda_1\dfrac{V_1 e^{u}}{ \int_{\Omega_{\boldsymbol\epsilon}} V_1 e^{u} dx } - \lambda_2\tau \dfrac{ V_2 e^{-\tau u}}{ \int_{\Omega_{\boldsymbol\epsilon}}V_2 e^{ - \tau u} dx}&\text{in $\Omega_{\boldsymbol\epsilon}=\Omega\setminus \displaystyle \bigcup_{i=1}^m \overline{B(\xi_i,\epsilon_i… CONTINUE READING

Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

References

Publications referenced by this paper.
SHOWING 1-10 OF 27 REFERENCES

Derivation of the equilibrium mean field equations of point vortex and vortex filament system , Theoret

  • T. Suzuki Sawada
  • Atti Accad . Naz . Lincei Rend . Lincei Mat . Appl .
  • 2016