On the greatest square free factor of terms of a linear recurrence sequence by

@inproceedings{Stewart2006OnTG,
  title={On the greatest square free factor of terms of a linear recurrence sequence by},
  author={C. L. Stewart},
  year={2006}
}
For any integer m let P (m) denote the greatest prime factor of m and let Q(m) denote the greatest square free factor of m with the convention that P (0) = P (±1) = 1 = Q(±1) = Q(0). Thus, if m = p1 1 · · · p hr r with p1, . . . , pr distinct primes and h1, . . . , hr positive integers, then Q(m) = p1 · · · pr. van der Poorten and Schlickewei [6] and Evertse [1] proved, by means of a p-adic version of Schmidt’s Subspace Theorem due to Schlickewei [8], that if (un) ∞ n=0 is a non-degenerate… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 16 references

An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers

  • E. M. Matveev
  • II, Izvestiya Mathematics 64
  • 2000
Highly Influential
4 Excerpts

The greatest square free factor of a binary recursive sequence

  • T. N. Shorey
  • Hardy Ramanujan Journal 6
  • 1983
Highly Influential
4 Excerpts

On binary recurrence sequences, Indag

  • Kunrui Yu, Ling-kei Hung
  • Mathem., N.S
  • 1995
1 Excerpt

Exponential Diophantine Equations

  • T. N. Shorey, R. Tijdeman
  • Cambridge Tracts in Mathematics 87, Cambridge…
  • 1986

On the greatest prime factor of terms of a linear recurrence sequence

  • C. L. Stewart
  • Rocky Mountain J. Math. 15
  • 1985
1 Excerpt

On sums of S-units and linear recurrences

  • J. H. Evertse
  • Compositio Math. 53
  • 1984
2 Excerpts

On divisors of Fermat

  • C. L. Stewart
  • Fibonacci, Lucas and Lehmer numbers III, J…
  • 1983
5 Excerpts

On divisors of terms of linear recurrence sequences

  • C. L. Stewart
  • J. reine angew. Math. 333
  • 1982
8 Excerpts

Schlickewei, The growth conditions for recurrence sequences

  • H.P.A.J. van der Poorten
  • Macquarie Math. Reports
  • 1982
2 Excerpts

A lower bound for linear forms in logarithms

  • M. Waldschmidt
  • Acta Arith. 37
  • 1980
2 Excerpts

Similar Papers

Loading similar papers…