# On the geometry of sharply 2-transitive groups

@article{Clausen2020OnTG, title={On the geometry of sharply 2-transitive groups}, author={Tim Clausen and Katrin Tent}, journal={arXiv: Group Theory}, year={2020} }

We show that the geometry associated to certain non-split sharply 2-transitive groups does not contain a proper projective plane. For a sharply 2-transitive group of finite Morley rank we improve known rank inequalities for this geometry and conclude that a sharply 2-transitive group of Morley rank 6 must be of the form $K\rtimes K^*$ for some algebraically closed field $K$.

## One Citation

### Simple sharply 2-transitive groups

- Mathematics, Economics
- 2021

We construct simple sharply 2-transitive groups. Our result answers an open question of Peter Neumann. In fact, we prove that every sharply 2-transitive group G of characteristic 0 embeds into a…

## References

SHOWING 1-10 OF 12 REFERENCES

### Sharply 2-transitive groups of finite Morley rank

- Mathematics
- 2018

A near-field of finite Morley rank and characteristic different from 2 is an algebraically closed field. It follows that sharply 2-transitive permutation group of finite Morley rank of permutation…

### A sharply 2-transitive group without a non-trivial abelian normal subgroup

- Mathematics
- 2014

We show that any group $G$ is contained in some sharply 2-transitive group $\mathcal{G}$ without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in…

### Sharply 2-transitive groups of characteristic 0

- MathematicsJournal für die reine und angewandte Mathematik (Crelles Journal)
- 2019

We construct sharply 2-transitive groups of characteristic 0 without regular
normal subgroups. These groups act sharply 2-transitively by conjugation on their involutions. This answers a…

### Sharply $2$-transitive groups

- Mathematics
- 2014

We give an explicit construction of sharply $2$-transitive groups with fixed point free involutions and without nontrivial abelian normal subgroup.

### Bad Groups

- Mathematics
- 2017

There is no bad group of Morley rank 2n+1 with an abelian Borel subgroup of Morley rank n. In particular, there is no bad group of Morley rank 3 (O. Frécon).

### Eine Gruppentheoretisch-Geometrische Kennzeichnung der Projektiv-Metrischen Geometrien

- Mathematics
- 1982

If V is a vector space over a commutative field K, and if Q∶V → K is an arbitrary quadratic form ≠ 0, then the metric vector space (V,K,Q) determines a projective metric space (π(V,K),≡Q), consisting…

### Aufbau der Geometrie aus dem Spiegelungsbegriff

- 1959

torischen Gruppenelemente sind und in den en wir geometrische Bezie hungen wie Inzidenz undOrthogonalitat durch gruppentheoretische Rela tionen erklaren. Die rein gruppentheoretisch formulierten…

### Groups of Finite Morley Rank (Oxford Logic Guides)

- 1995