# On the distribution of lattice points on hyperbolic circles

@article{Chatzakos2020OnTD, title={On the distribution of lattice points on hyperbolic circles}, author={Dimitrios Chatzakos and Par Kurlberg and Stephen Lester and Igor Wigman}, journal={arXiv: Number Theory}, year={2020} }

We study the fine distribution of lattice points lying on expanding circles in the hyperbolic plane $\mathbb{H}$. The angles of lattice points arising from the orbit of the modular group $PSL_{2}(\mathbb{Z})$, and lying on hyperbolic circles, are shown to be equidistributed for generic radii. However, the angles fail to equidistribute on a thin set of exceptional radii, even in the presence of growing multiplicity. Surprisingly, the distribution of angles on hyperbolic circles turns out to be… Expand

#### References

SHOWING 1-10 OF 44 REFERENCES

Hyperbolic prime number theorem

- Mathematics
- 2009

AbstractWe count the number S(x) of quadruples $ {\left( {x_{1} ,x_{2} ,x_{3} ,x_{4} } \right)} \in \mathbb{Z}^{4} $ for which
$$ p = x^{2}_{1} + x^{2}_{2} + x^{2}_{3} + x^{2}_{4} \leqslant x $$is a… Expand

Spectral methods of automorphic forms

- Mathematics
- 2002

Introduction Harmonic analysis on the Euclidean plane Harmonic analysis on the hyperbolic plane Fuchsian groups Automorphic forms The spectral theorem. Discrete part The automorphic Green function… Expand

On the angular distribution of Gaussian integers with fixed norm

- Computer Science, Mathematics
- Discret. Math.
- 1999

It is able to show that when n is representable then it is almost surely representable with min(a, b) small, with an explicit bound. Expand

Bombieri's theorem in short intervals

- Mathematics
- 1989

AbstractThe well-known Bombieri-A. I. Vinogradov theorem states that(1)
$$\sum\limits_{q \leqslant x^{\tfrac{1}{2}} (\log x)^{ - s} } {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{y… Expand

Superscars for Arithmetic Point Scatterers II

- Physics, Mathematics
- 2019

We consider momentum push-forwards of measures arising as quantum limits (semi-classical measures) of eigenfunctions of a point scatterer on the standard flat torus $\mathbb T^2 = \mathbb R^2/\mathbb… Expand

Intervals between numbers that are sums of two squares

- Mathematics
- 2017

In this paper, we improve the moment estimates for the gaps between numbers that can be represented as a sum of two squares of integers. We consider certain sum of Bessel functions and prove the… Expand

On probability measures arising from lattice points on circles

- Mathematics, Medicine
- Mathematische annalen
- 2017

The set of attainable measures is investigated and it is shown that it contains all extreme points, in the sense of convex geometry, of the set of all probability measures that are invariant under some natural symmetries. Expand

Angles in hyperbolic lattices : The pair correlation density

- Mathematics
- 2014

It is well known that the angles in a lattice acting on hyperbolic $n$-space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such… Expand