On the distribution of Sidon series

@inproceedings{Asmar1993OnTD,
  title={On the distribution of Sidon series},
  author={Nakhl{\'e} Habib Asmar and Stephen Montgomery-Smith},
  year={1993}
}
Let B denote an arbitrary Banach space, G a compact abelian group with Haar measure μ and dual group Γ. Let E be a Sidon subset of Γ with Sidon constant S(E). Let rn denote the n-th Rademacher function on [0, 1]. We show that there is a constant c, depending only on S(E), such that, for all α > 0: c−1P ∥∥∥∥ N ∑ n=1 anrn ∥∥∥∥ ≥ cα ] ≤ μ ∥∥∥∥ N ∑ 

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-8 OF 8 REFERENCES

Pelczyński, Commensurate sequences of characters

  • A. Pe
  • Proc. Amer. Math. Soc
  • 1988

Kahane,“Some Random Series of Functions

  • J. P. Ka
  • Cambridge Studies in Advanced Mathematics,
  • 1985

Ensembles de Sidon et processus gaussiens

  • G. Pisier
  • C. R. Acad. Sc. (Paris), Série A,
  • 1978

Semyonov, Rademacher series in symmetric spaces

  • E.M.V.A. Rodin
  • Analyse Math
  • 1975

Similar Papers

Loading similar papers…