• Corpus ID: 222208832

On the determinant of representations of generalized symmetric groups.

@article{Amrutha2020OnTD,
  title={On the determinant of representations of generalized symmetric groups.},
  author={P. Amrutha and T. Geetha},
  journal={arXiv: Representation Theory},
  year={2020}
}
In this paper we study the determinant of irreducible representations of the generalized symmetric groups $\mathbb{Z}_r \wr S_n$. We give an explicit formula to compute the determinant of an irreducible representation of $\mathbb{Z}_r \wr S_n$. Recently, several authors have characterized and counted the number of irreducible representations of a given finite group with nontrivial determinant. Motivated by these results, for given integer $n$, $r$ an odd prime and $\zeta$ a nontrivial… 

Tables from this paper

References

SHOWING 1-10 OF 13 REFERENCES

Determinants of representations of Coxeter groups

In Ayyer et al. (J Comb Theory Ser A 150:208–232, 2017), the authors characterize the partitions of n whose corresponding representations of $$S_n$$Sn have nontrivial determinant. The present paper

Representations of symmetric groups with non-trivial determinant

The Representation Theory of the Symmetric Group

1. Symmetric groups and their young subgroups 2. Ordinary irreducible representations and characters of symmetric and alternating groups 3. Ordinary irreducible matrix representations of symmetric

The Local Langlands Conjecture for Gl(2)

Smooth Representations.- Finite Fields.- Induced Representations of Linear Groups.- Cuspidal Representations.- Parametrization of Tame Cuspidals.- Functional Equation.- Representations of Weil

Enumerative combinatorics

This review of 3 Enumerative Combinatorics, by Charalambos A.good, does not support this; the label ‘Example’ is given in a rather small font followed by a ‘PROOF,’ and the body of an example is nonitalic, utterly unlike other statements accompanied by demonstrations.

Applied finite group actions

0. Labeled Structures.- 1. Unlabeled Structures.- 2. Enumeration of Unlabeled Structures.- 3. Enumeration by Weight.- 4. Enumeration by Stabilizer Class.- 5. Poset and Semigroup Actions.- 6.

Theorie des Fonctions Numeriques Simplement Periodiques

CE mémoi re a pour obj et l ’ étude des f oncti ons symétri ques des raci nes d’ une équati on du second degré, et son appl i cat i on à l a théori e des nombres premi ers. Nous i ndi quons dès l e

Combinatorics and representations of finite groups