On the detection of singularities of a periodic function

  title={On the detection of singularities of a periodic function},
  author={Hrushikesh Narhar Mhaskar and J{\"u}rgen Prestin},
  journal={Adv. Comput. Math.},
We discuss the problem of detecting the location of discontinuities of derivatives of a periodic function, given either finitely many Fourier coefficients of the function, or the samples of the function at uniform or scattered data points. Using the general theory, we develop a class of trigonometric polynomial frames suitable for this purpose. Our methods also help us to analyze the capabilities of periodic spline wavelets, trigonometric polynomial wavelets, and some of the classical… CONTINUE READING


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 17 references

On the computation of periodic spline wavelets

  • G. Plonka, M. Tasche
  • Ap- plied and Computational Harmonic Analysis, 2
  • 1995
Highly Influential
14 Excerpts

Sur l'approximation d'uns fonction periodique et ses derivees successives par un polynomie trigonometrique et par ses derivees successives

  • J. Czipszer, G. Freud
  • Acta Math., 5
  • 1957
Highly Influential
5 Excerpts

Trigonometric Series

  • A. Zygmund
  • 1977
Highly Influential
5 Excerpts

Fourier analysis and approximation

  • P. L. Butzer, R. J. Nessel
  • Vol. 1", Academic Press, New York
  • 1971
Highly Influential
5 Excerpts

An introduction to wavelets

  • C. K. Chui
  • Academic Press, Boston
  • 1992
Highly Influential
3 Excerpts


  • Y. Meyer
  • vibrations, and scalings", CRM Monograph Series…
  • 1997
1 Excerpt

Periodic orthogonal splines and wavelets

  • Y. W. Koh, S. L. Lee, H. H. Tan
  • Appl. Comput. Harmonic Anal. 2
  • 1995
2 Excerpts

Similar Papers

Loading similar papers…