On the de rham cohomology of algebraic varieties

@article{Hartshorne1966OnTD,
  title={On the de rham cohomology of algebraic varieties},
  author={Robin Hartshorne},
  journal={Publications Math{\'e}matiques de l'Institut des Hautes {\'E}tudes Scientifiques},
  year={1966},
  volume={45},
  pages={6-99}
}
  • R. Hartshorne
  • Published 1 December 1975
  • Mathematics
  • Publications Mathématiques de l'Institut des Hautes Études Scientifiques
© Publications mathématiques de l’I.H.É.S., 1966, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. 
Modular curves and the eisenstein ideal
© Publications mathématiques de l’I.H.É.S., 1977, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES
This is the final project for Prof. Bhargav Bhatt’s Math 613 in the Winter of 2015 at the University of Michigan. The purpose of this paper is to prove a result of Grothendieck [Gro66] showing, for a
Completions and derived de Rham cohomology
We show that Illusie's derived de Rham cohomology (Hodge-completed) coincides with Hartshorne's algebraic de Rham cohomology for a finite type map of noetherian schemes in characteristic 0; the case
p-adic derived de Rham cohomology
This paper studies the derived de Rham cohomology of F_p and p-adic schemes, and is inspired by Beilinson's recent work. Generalising work of Illusie, we construct a natural isomorphism between
Un critère d'extension d'un foncteur défini sur les schémas lisses
Let $k$ be a field of characteristic zero. By using Hironaka's desingularisation theorem, we prove an extension criterion for a functor defined on nonsingular k-schemes and taking values on a
Poincaré duality for algebraic de rham cohomology
Abstract.We discuss in some detail the algebraic notion of De Rham cohomology with compact supports for singular schemes over a field of characteristic zero. We prove Poincaré duality with respect to
RESIDUES AND DIFFERENTIAL OPERATORS ON SCHEMES
Beilinson Completion Algebras (BCAs) are generalizations of complete local rings, and have a rich algebraic-analytic structure. These algebras were introduced in my paper "Traces and Differential
Effective de Rham Cohomology - The General Case
TLDR
It is shown that the p-th de Rham cohomology of a smooth affine variety of dimension m and degree D can be represented by differential forms of degree (pD)^{O(pm)}, which is relevant for the algorithmic computation of the cohomologies, but is also motivated by questions in the theory of ordinary differential equations related to the infinitesimal Hilbert 16th problem.
De Rham and Infinitesimal Cohomology in Kapranov's Model for Noncommutative
The title refers to the nilcommutative or NC-schemes introduced by M. Kapranov in 'Noncommutative Geometry Based on Commutator Expansions', J. Reine Angew. Math 505 (1998) 73-118. The latter are
The general formalism of L-functions, Deligne cohomology and Poincaré duality theories
In this chapter we consider smooth projective varieties defined over ℚ and we define their L-functions. The whole formalism depends on several conjectures, suggested by the zero- and one-dimensional
...
...

References

SHOWING 1-10 OF 29 REFERENCES
On the de rham cohomology of algebraic varieties
© Publications mathématiques de l’I.H.É.S., 1966, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » ( http://www.
Géométrie algébrique et géométrie analytique
© Annales de l’institut Fourier, 1956, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions
La théorie des classes de Chern
© Bulletin de la S. M. F., 1958, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord
Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen
© Publications mathématiques de l’I.H.É.S., 1960, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
Cohomological Dimension of Algebraic Varieties
Let X be a scheme of finite type over a field k. The cohomological dimension of X is the smallest integer n > 0 such that H'(X, F) = 0 for all i > n, and for all quasi-coherent sheaves F on X. There
Formal Cohomology: II. The Cohomology Sequence of a Pair
Now Grothendieck has shown that the cohomology of a complex variety may be defined algebraically; in particular if X is a complex affine variety the canonical map from the closed/exact algebraic
Integrals of the Second Kind on an Algebraic Variety
The classical theory of rational functions on a curve, and their integrals, was generalised by Picard to give a theory of functions and their integrals on an algebraic surface, in an extensive series
Complex analytic connections in fibre bundles
Introduction. In the theory of differentiable fibre bundles, with a Lie group as structure group, the notion of a connection plays an important role. In this paper we shall consider complex analytic
...
...