On the conjectures of Atiyah and Sutcliffe

@article{Mazur2011OnTC,
  title={On the conjectures of Atiyah and Sutcliffe},
  author={Marcin Mazur and Bogdan V. Petrenko},
  journal={Geometriae Dedicata},
  year={2011},
  volume={158},
  pages={329-342}
}
Motivated by certain questions in physics, Atiyah defined a determinant function which to any set of n distinct points x1, . . . , xn in $${\mathbb R^3}$$ assigns a complex number D(x1, . . . , xn). In a joint work, he and Sutcliffe stated three intriguing conjectures about this determinant. They provided compelling numerical evidence for the conjectures and an interesting physical interpretation of the determinant. The first conjecture asserts that the determinant never vanishes, the second… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-10 OF 10 REFERENCES

Einige Bemerkungen über die dreiseitige Pyramide

A. L. Crelle
  • Sammlung mathematischer Aufsätze u. Bemerkungen 1
  • 1821
VIEW 14 EXCERPTS
HIGHLY INFLUENTIAL

The geometry of point particles

  • Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  • 2002
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Indistinguishability for quantum particles: spin, statistics and the geometric phase

  • Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  • 1997
VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

Mathematical Constants

S. R. Finch
  • Cambridge University Press
  • 2003
VIEW 1 EXCERPT

Configurations of points

  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  • 2001
VIEW 1 EXCERPT