On the classification of toric Fano 4-folds

@article{Batyrev1998OnTC,
  title={On the classification of toric Fano 4-folds},
  author={V. Batyrev},
  journal={Journal of Mathematical Sciences},
  year={1998},
  volume={94},
  pages={1021-1050}
}
  • V. Batyrev
  • Published 1998
  • Mathematics
  • Journal of Mathematical Sciences
  • AbstractThe biregular classification of smoothd-dimensional toric Fano varieties is equivalent to the classification of special simplicial polyhedraP in ℝd, the so-called Fano polyhedra, up to an isomorphism of the standard lattice % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr… CONTINUE READING
    126 Citations
    Toward the classification of higher-dimensional toric Fano varieties
    • 105
    • Highly Influenced
    • PDF
    Toric Fano varieties and convex polytopes
    • 12
    • PDF
    On the birational geometry of Fano 4-folds
    • 17
    • PDF
    Toric Fano varieties and birational morphisms
    • 20
    • PDF
    Applications of mirror symmetry to the classification of Fano varieties
    • 4
    • PDF
    Classification of toric Fano 5-folds
    • 51
    • PDF
    On the birational geometry of toric Fano 4-folds
    • 6
    • PDF

    References

    SHOWING 1-10 OF 49 REFERENCES
    Fano 3-FOLDS. I
    • 234
    Decomposition of Toric Morphisms
    • 189
    • Highly Influential
    Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties
    • 1,006
    • PDF
    Introduction to Toric Varieties.
    • 1,933
    • Highly Influential
    On the classification of toric fano varieties
    • G. Ewald
    • Mathematics, Computer Science
    • Discret. Comput. Geom.
    • 1988
    • 45
    • PDF
    The boundedness of degree of Fano varieties with Picard number one
    • 55
    • PDF
    On the Hodge structure of projective hypersurfaces in toric varieties
    • 187
    • PDF
    TOROIDAL FANO VARIETIES AND ROOT SYSTEMS
    • 55
    Classification of Fano 3-folds with B2≥2
    • 220
    Cubic forms; algebra, geometry, arithmetic
    • 436