On the classification of toric Fano 4-folds
@article{Batyrev1998OnTC, title={On the classification of toric Fano 4-folds}, author={V. Batyrev}, journal={Journal of Mathematical Sciences}, year={1998}, volume={94}, pages={1021-1050} }
AbstractThe biregular classification of smoothd-dimensional toric Fano varieties is equivalent to the classification of special simplicial polyhedraP in ℝd, the so-called Fano polyhedra, up to an isomorphism of the standard lattice
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr… CONTINUE READING
126 Citations
Toward the classification of higher-dimensional toric Fano varieties
- Mathematics
- 1999
- 105
- Highly Influenced
- PDF
References
SHOWING 1-10 OF 49 REFERENCES
Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties
- Mathematics
- 1993
- 1,006
- PDF
On the classification of toric fano varieties
- Mathematics, Computer Science
- Discret. Comput. Geom.
- 1988
- 45
- PDF