On the classification of oriented 3-plane bundles over a 6-complex

@article{Antieau2012OnTC,
  title={On the classification of oriented 3-plane bundles over a 6-complex},
  author={Benjamin Antieau and Ben Williams},
  journal={Topology and its Applications},
  year={2012},
  volume={173},
  pages={91-93}
}
3 Citations
Obstruction theory on 7-manifolds
This paper gives a uniform, self-contained and direct approach to a variety of obstruction-theoretic problems on manifolds of dimension 7 and 6. We give necessary and sufficient cohomological
Infinite CW-complexes, Brauer groups and phantom cohomology
Expanding a result of Serre on finite CW-complexes, we show that the Brauer group coincides with the cohomological Brauer group for arbitrary compact spaces. Using results from the homotopy theory of

References

SHOWING 1-7 OF 7 REFERENCES
Classification of oriented vector bundles over 5-complexes
A classification of 5-dimensional vector bundles over CW-complexes of dimension 5 are carried out in terms of characteristic classes.
The classification of orientable vector bundles over CW-complexes of small dimension
  • L. Woodward
  • Mathematics, Geology
    Proceedings of the Royal Society of Edinburgh: Section A Mathematics
  • 1982
Synopsis The classification of orientable vector bundles over CW-complexes of dimension ≦8 is given in terms of characteristic classes using elementary homotopy theoretic methods and relations among
Unramified division algebras do not always contain Azumaya maximal orders
We show that, in general, over a regular integral noetherian affine scheme X of dimension at least 6, there exist Brauer classes on X for which the associated division algebras over the generic point
Cohomologie modulo 2 des complexes d’Eilenberg-MacLane
On sait que les complexes K (/7, q) introduits par Eilenberg-MacLane dans [4] jouent un r61e essentiel dans un grand nombre de questions de topologie alg6brique. Le pr6sent article est une
CLASSIFICATION OF ORIENTED SPHERE BUNDLES OVER A 4-COMPLEX