On the canonical decomposition of generalized modular functions
@inproceedings{Kohnen2010OnTC, title={On the canonical decomposition of generalized modular functions}, author={Winfried Kohnen and Geoffrey Mason}, year={2010} }
The authors have conjectured (\cite{KoM}) that if a normalized generalized modular function (GMF) $f$, defined on a congruence subgroup $\Gamma$, has integral Fourier coefficients, then $f$ is classical in the sense that some power $f^m$ is a modular function on $\Gamma$. A strengthened form of this conjecture was proved (loc cit) in case the divisor of $f$ is \emph{empty}. In the present paper we study the canonical decomposition of a normalized parabolic GMF $f = f_1f_0$ into a product of…
7 Citations
Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy
- MathematicsSelecta Mathematica
- 2020
We initiate the study of Selberg zeta functions $$Z_{\Gamma ,\chi }$$ Z Γ , χ for geometrically finite Fuchsian groups $$\Gamma $$ Γ and finite-dimensional representations $$\chi $$ χ with…
Eisenstein series twisted with non-expanding cusp monodromies
- MathematicsThe Ramanujan Journal
- 2020
Let $$\Gamma $$ Γ be a geometrically finite Fuchsian group and suppose that $$\chi :\Gamma \rightarrow {{\,\mathrm{GL}\,}}(V)$$ χ : Γ → GL ( V ) is a finite-dimensional representation with…
The Unbounded Denominators Conjecture
- Mathematics
- 2021
We prove the unbounded denominators conjecture in the theory of noncongruence modular forms for finite index subgroups of SL2(Z). Our result includes also Mason’s generalization of the original…
Fourier coefficients of three-dimensional vector-valued modular forms
- Mathematics
- 2012
A thorough analysis is made of the Fourier coefficients for vector-valued modular forms associated to three-dimensional irreducible representations of the modular group. In particular, the following…
On generalized modular forms supported on cuspidal and elliptic points
- Mathematics
- 2010
Suppose N∈{13,17,19,21,26,29,31,34,39,41,49,50}. In this paper, we extend previous results of Kohnen–Mason (On the canonical decomposition of generalized modular functions, 2010) to prove that…
A note on the Fourier coefficients of half-integral weight modular forms
- Mathematics
- 2013
In this note, we show that the algebraicity of the Fourier coefficients of half-integral weight modular forms can be determined by checking the algebraicity of the first few of them. We also give a…
Fourier expansions of vector-valued automorphic functions with non-unitary twists
- Mathematics
- 2022
We provide Fourier expansions of vector-valued eigenfunctions of the hyperbolic Laplacian that are twist-periodic in a horocycle direction. The twist may be given by any endomorphism of a…
References
SHOWING 1-10 OF 16 REFERENCES
On Generalized Modular forms and their Applications
- MathematicsNagoya Mathematical Journal
- 2008
Abstract We study the Fourier coefficients of generalized modular forms f(τ) of integral weight k on subgroups Γ of finite index in the modular group. We establish two Theorems asserting that f(τ) is…
PARABOLIC GENERALIZED MODULAR FORMS AND THEIR CHARACTERS
- Mathematics
- 2009
We make a detailed study of the generalized modular forms of weight zero and their associated multiplier systems (characters) on an arbitrary subgroup Γ of finite index in the modular group. Among…
Les Schémas de Modules de Courbes Elliptiques
- Mathematics
- 1973
Soit X le demi-plan de Poincare
$$ X = \{ z \in \mathbb{C}|Im(z) > 0\} . $$
Le groupe SL(2, ℝ) agit sur X par transformations homographiques
$$ z \mapsto \frac{{az + b}} {{cz + d}}. $$
Si…
Modular Forms and Functions
- Mathematics
- 1977
1. Groups of matrices and bilinear mappings 2. Mapping properties 3. Automorphic factors and multiplier systems 4. General properties of modular forms 5. Construction of modular forms 6. Functions…
Modular Forms
- MathematicsNature
- 1970
Modular Forms and Dirichlet SeriesBy Andrew Ogg. (Mathematics Lecture Notes Series.) Pp. xviii + 173. (W. A. Benjamin: New York and Amsterdam, 1969.) n.p.
On modular forms for some noncongruence subgroups of SL2(ℤ) II
- Mathematics
- 2009
In this paper we show every type I(A) noncongruence character group of Γ0(M) with M square‐free satisfies the so‐called unbounded denominator property.
Algebraic Geometry
- MathematicsNature
- 1973
Introduction to Algebraic Geometry.By Serge Lang. Pp. xi + 260. (Addison–Wesley: Reading, Massachusetts, 1972.)